SLU has an important role to play in the implementation of Agenda 2030, in Sweden and beyond.

Published

This blog post was written by Jens Olsson, researcher at the Department of aquatic resources,Vice Dean responsible for environmental monitoring and assessment at the NJ-Faculty; and coordinator for SLU Water Forum.

Photo: Jens Olsson

The High-Level Political Forum (HLPF) is an annually recurring meeting that serves as UN’s platform for sustainability and focus on reviewing the progress and achievements of Agenda 2030. This years’ forum took place in early July, and was the first since the pandemic to be held on site in the United Nations headquarters in New York. The theme for the meeting was recovery from the pandemic while also advancing the implementation of Agenda 2030. The Sustainable Development Goals (SGD’s) in focus for the meeting were SDG 4 (Quality Education), 5 (Gender Equality), 14 (Life Below Water), 15 (Life on Land) and 17 (Partnerships for the Goals).

As SLU has extensive and decisive knowledge for the implementation of at least SDG 14 and 15, we were invited by the Government Offices of Sweden to be part of the Swedish delegation for HLPF. In my role as Vice Dean responsible for environmental monitoring and assessment at the NJ-Faculty and coordinator for SLU Water Forum, I participated as SLU’s representative in the delegation.

The reports shared at the meeting on the progress towards global sustainability was anything but positive. Despite that we are approaching the half-time summit of Agenda 2030, it is apparent that goal fulfilment is moving too slow, and in many cases in the opposite direction to what is desired. This is mainly the result of the Corona pandemic and Russia’s invasion of Ukraine, but also due to a lack of political will and societal commitment. The Ministerial declaration following HLPF was also one of the weakest so far, with substantial backlash with regards to gender equality and rights of vulnerable groups.

In spite of this negative development, during HLPF it was clearly stated that we now must go from words to action and accelerate the implementation of the extensive societal transformation needed to reach the ambitious goals of Agenda 2030. This also to hamper the impact of the concurrent and multiple global crises including climate change, biodiversity loss and pollution. What was also obvious at the meeting is that the perspectives of young and vulnerable people are essential for this transformation to happen, as is making use of local knowledge from, among others, indigenous people. It was concluded that economic growth needs to be decoupled from negative impacts on biodiversity, and that we are at a stage in time where knowledge for reaching the goals is available. Now, perhaps more than ever before, political will and societal commitment are essential to move from words to action.

Photo: Jens Olsson

For me this was a true personal experience, and despite the reports of slow progress and backlash towards reaching the goals of the Agenda in 2030, it was fascinating to see and meet that many countries and committed people in one place at one time. In spite of all the bad news, the spirit of hope was present, and I witnessed that the majority of participating countries shared their ambitions for a more sustainable future. It was also instructive to be part of a large and inclusive delegation with participation from a wide range of disciplines and backgrounds including representatives from governmental agencies (for example The Swedish Environmental Protection Agency and The Swedish Agency for Marine and Water Management), the civil societies, youth organisations and municipalities, and also politicians.

I think that for the implementation of Agenda 2030 in Sweden and beyond, SLU has a key role to play. However, we need to raise awareness of the Agenda in our organisation and accelerate our positive impact and contribution to social and environmental sustainability. Even more, I believe that we as a university can make a greater contribution with knowledge, data, advice, innovation and education to support the achievement of the ambitious goals of the Agenda.

Closing the loop – making food systems circular

Published

This blog post was written by Kimberly Spirito, intern at SLU Global. It was first published at SIANI, Swedish International Agricultural Network Initiative.

Photo: Igrinz/Pizabay

We have all heard about the idea of creating circular systems and how they could create sustainable societies. But what would it take to transform our current linear systems into circular ones? This question was at the heart of one of the themed panel discussions at the Agri4D conference, which took place 28-30 September 2021.

The online conference brought together researchers, practitioners, policymakers, and an insightful audience to discuss food systems for new realities. The platform Coeo, on which the conference was held, offered the possibility of interacting with people working with sustainable transformation of food systems from all over the world. Panel discussions and presentations of the latest research were held, and the conference moderators brought everything together beautifully through a livestream on stage. It was like we were physically present at a conference, while having the perk of saving CO2 emission from not having to travel. New knowledge was generated, and new connections were made despite the pandemic.

Six topics were discussed during the conference. This blogpost will highlight my experiences and key takeaways from the panel discussions regarding topic 4 on circular food systems.

Rethinking waste management

Today, waste is produced at every step of the process from farm to fork, Matthias Eriksson highlighted that we have come pretty far in reintegrating waste into production chains and recycling it into new products and services. However, we can go further in terms of closing the loop.

What we want and what we see now is that there are a lot of initiatives to make these loops smaller so we can recirculate the waste directly back to the food supply chains and make it more efficient. But the problem is that there is a risk that we might just circulate everything without actually gaining the whole purpose of food, that it should be eaten.”- Matthias Eriksson, SLU 

The second speakers’ presentation continued with addressing the risk that reintegrating food waste into a system might not lead to the generation of more food being eaten. Charity Mashegde and Isheanesu Murwira, two representatives from the organisation Knowledge Exchange Hub, spoke about how they adopt the philosophy of “food is never waste” in their work. They proposed that using the food that could not be sold in markets to cultivate Black Soldier Fly larvae as protein for animal feed, but also as food for human consumption, could be a way of closing the loop and minimizing food waste. Black Soldier Fly larvae have lower environmental impact than other protein sources, and have high fat, protein and mineral content, more iron and zinc than lean meats, as well as more calcium than milk.

Another crucial topic discussed is that a lot of research and innovation in terms of waste management seems focused on the urban-to-urban or rural-to-urban loops. There is a shortage of interest in rural-to-rural circular systems, specifically within sanitation research. There is potential within this topic according to Linus Dagerskog, who presented a resource flow mapping tool for rapid assessment of rural recycling opportunities. It is a participatory tool where the community is involved in generating a waste management system that suits their needs best. This presentation showed the potential for the impact of research when conducted in close collaboration with the people who will benefit from it. A collective takeaway from the conference was that research needs to be conducted in collaboration with other actors and with the people who are to benefit from it.

Recirculating nutrients from waste

The potential of sanitation waste came up several times. PhD Student Aline Paiva Moreira’s talk on Human urine as a fertilizer for sustainable food systems highlighted a lack of diverse research on the topic of linking energy, sanitation, and agriculture. Most research on the topic is conducted in Europe or by European scholars. Aline pointed out that the solutions that fit the European context are not universal. Linking energy, sanitation, and agriculture is a way to create a sustainable circular system, but it needs to be country and context specific for it to be sustainable.

Researcher Chea Eliyan also spoke about the potential for nutrients and energy retrieval from faecal sludge specifically in the case of Phnom Penh. Nitrogen, phosphorus, and energy could be recovered from it. The talks by Aline and Chea highlighted the need for more sustainable sanitation systems and the real potential it could have for closing the loop when combined with agriculture and energy.

More effective use of animal waste within aquaculture was also discussed. According to Da Chau Ti, who spoke about a research project conducted in Vietnam, pond sediments from seafood production could be used as organic fertilizer for vegetable cultivation. Farmers could produce both fish and vegetables, generating food and income security by having multiple sources of income/food sources. There can also be less environmental impact and soil health can be improved over the years when pond sediments are incorporated as a fertilizer.

Circular system initiatives

Food insecurity is a real threat in our reality of climate change. Finding efficient and sustainable ways of producing food will ensure availability of food. Horticulture, hydroponics, and aquaponics present solutions for sustainable circular food production. Researchers Karl Johan Bergstrand and Sammar Khalil from SLU spoke about indoor food production and energy production from food waste and human waste after it’s been through biological treatment. Their research has revealed that bioremediation with fungi, nitrification, and dilution makes it possible to separate nutrients from harmful or unwanted substances within food waste and human waste in a safe way. High contents of Sodium, Chlorine, Ammonium, heavy metals, and micropollutants such as pesticides can be removed with these methods. The nutrients from the waste can then be used in hydroponics, aquaponics, and horticulture.

Another way of creating circular systems, besides recirculating waste into production, is to harness renewable energy. Yasmina Ganse presented how the company Spowdi works with enabling smallholder farmers to transition from fossil fuel to solar-powered irrigation pumps with no running costs. Spowdi is short for “solar-powered water distribution” and their technology is called Spowdi Mobile Pro. The technology helps farmers produce more food with less energy use and less water and thus helps to reduce the CO2 emissions and water consumption.

Many initiatives are trying to transform our current linear systems into circular ones, many targeting food systems. However, they face real challenges. The last speaker Jennifer McConville presented her ideas of how to best overcome these challenges, saying that it is important from the start to have a good understanding of the socio-technical landscape/regime before initiating projects for transformation. The systems we have today are based on linear process design. Implementing circular niches within current linear systems requires involvement from several actors, such as end users, service providers, users of products, politicians and regulators, and other sectors such as the building sector, energy sector and food sector.

If we want niche innovations to lead to circular solutions that work, we need to understand how we can play around with functions such as current functionality of technology, socio-cultural norms, legal and regulatory frameworks, existing skills and capacity, financial arrangements, and institutional arrangements within socio-technical landscapes. It is not enough to only consider the potential utility of a technology.

Food for thought

For me, as a student of Global Studies, the topic of nutrient and energy recovery from waste is not something I have thought about when thinking of circular systems. Hearing about the benefits of linking energy, sanitation, and agriculture was an eyeopener to the potential of food systems and sanitation systems to contribute to sustainability.

Following the panel discussions about circular systems within food systems has really given me food for thought. There are several things I take away from it, but the thoughts I take to heart are “food is never waste” and that implementing circular innovations where linear systems exist requires a comprehensive understanding of the bigger picture. To me, they encompass everything else said during the panel discussions and broadly answer the question of what it would take to transform our linear systems into circular.

To summarise, I quote Sara GrÀslund, head of SLU Global,

“It is important to work from farm to fork, but just as important to work from fork back to farm.”


Read another blog from Agri4D on innovations for food systems transformation.

Ethiopia assesses Environmental Monitoring and Assessment for Agenda 2030

Published

The blog post is written by Kevin Bishop, Professor at the Department of Aquatic Sciences and Assessment, SLU, and Solomon Gebreyohannis Gebrehiwot, Assistant professor at the Ethiopian Institute of Water Resources (EIWR) and Water and Land Resources Center (WLRC), Addis Ababa University, Ethiopia. 

A field excursion to considering the possibilities for environmental monitoring and assessment in Ethiopia. Photo: Kevin Bishop

There is a global consensus to work towards the UN’s Sustainable Development Goals (SDGs). But to set a course to these goals, and then navigate through the trade-offs and synergies between these goals is a challenge. Environmental Monitoring and Assessment (EMA) has been a central feature of how many industrialized societies, including Sweden, have tried to achieve environmental goals for half a century now. But Agenda 2030 involves the economic and social dimensions as well as the environmental dimensions of sustainable development.

A group of researchers from Ethiopia, Chile and Sweden, all with ties to SLU, looked at how EMA could be renewed for a more effective role in Agenda 2030 that encompasses socio-economic dimensions and respects the complexity of knowledge needed to understand nature’s contribution to socio-economic development (Bishop and Jönsson, 2020). The three national settings were chosen to focus on how EMA’s potential looked in societies with different income levels, with a focus on issues surrounding forests and waters.

One outcome of the project is a new article examining EMA in Ethiopia (Gebrehiwot et al., 2021). National experts and practitioners were gathered and interviewed by the country’s Academy of Science to look at what the country currently has in the way of EMA, but also opportunities for the future, since the possibilities for observing ecosystems have developed tremendously in recent years, including remote sensing, genomics, and citizen science.

The stakeholder discussions in Ethiopia revealed a strong and shared belief that evidence-based assessments can help manage the challenges posed by the simultaneous pursuit of multiple SDGs. The most remarkable finding for those involved in the expert meetings was discovering the existence of more environmental M&A than the expert group had anticipated. That highlighted a weakness that many of the participants already suspected, namely that the environmental data which does exist are not well-communicated. The information resources remain largely unknown to decision-makers and even relevant experts, to say nothing of secondary stakeholders and the public at large. Given how Europe and other industrialized societies struggle to achieve the goals of “open science”, the issue of data documentation and sharing is an even more acute challenge in low-income countries.

Solomon and other experts gathered at the Ethiopian Academy of Sciences, Feb 2018. Photo: Kevin Bishop

Strengthening existing public institutions, encouraging local participation through citizen science and adoption of up to date technologies to create national platform for EMA would be an important step to fill in the gaps identified in this study. Furthermore, this would facilitate addressing the needs for more integrated monitoring and assessment of the interactions between the use and management of water, forests, and other resources as well as to better navigate synergies and conflicts between SDGs.

Common to all the countries in the study, the participants in the Ethiopian study found that the evidence base must be translated into socially accepted knowledge in order to navigate potential synergies and conflicts between different SDGs. A strength Ethiopia has for this is the presence of government financed extension agents in villages across the country. This meant that developments in the evidence-base could be rapidly communicated and worked with down to the level of individual land-owners. Potential was also recognized in Ethiopia for more participatory environmental analysis methods that could promote a more inclusive dialogue on natural resource management.

Together with the other two case studies in Sweden and Chile, a theoretical framework regarding legitimacy and governance has been developed that could help evolve EMA into a powerful new tool which builds on a long tradition of environmental monitoring and assessment, but with the strength of co-production of knowledge suited to the vision of Agenda 2030, and a focus on learning processes in governance, creating versatility for different contexts (Alarcon et al., 2021).

This blog post is based on a published report:
Gebrehiwot, S. G., Bewket, W., Mengistu, T., Nuredin, H., Ferrari, C. A., & Bishop, K. (2021). Monitoring and assessment of environmental resources in the changing landscape of Ethiopia: a focus on forests and water. Environmental Monitoring and Assessment, 193(10), 1-13.


Alarcon Ferrari, C., Jönsson, M., Gebreyohannis Gebrehiwot, S., Chiwona-Karltun, L., Mark-Herbert, C., Manuschevich, D., Powell, N., Do, T., Bishop, K. & Hilding-Rydevik, T. (2021). Citizen Science as Democratic Innovation That Renews Environmental Monitoring and Assessment for the Sustainable Development Goals in Rural Areas. Sustainability, 13(5), 2762.

Bishop, K. and Jönsson, M. (2020). Med miljöanalys som verktyg: Skogen och Agenda 2030. KSLA Nytt och Noterat, 2020(1): 4-5)

 

More connections: Sustainable livestock opportunities and new food system realities

Published

Shirley Tarawali, assistant director general of the International Livestock Research Institute (ILRI) and chair of the Global Agenda for Sustainable Livestock, made a keynote presentation at an Agri4D online conference, Food Systems for New Realities, held 28–30 Sep 2021. The conference was organized by SLU Global and the Swedish International Agriculture Network Initiative (SIANI), with support from the Swedish International Development Cooperation Agency (Sida). This blog post was first published by ILRI 4 Oct 2021. 

Tarawali’s remarks, ‘More connections: Sustainable livestock opportunities and new food system realities’, pulled examples from the livestock sector to illustrate the importance of existing, new and diverse connections to deliver on the future sustainable, inclusive, resilient and inclusive food systems we all aspire to.

A transcript of her remarks follows.

As I considered the theme of this conference, Food systems for new realities, and the core question it addresses, as I brainstormed with colleagues—and I particularly want to acknowledge ILRI’s Susan MacMillan and David Aronson in this regard—I found myself circling back again and again to the new connections that have arisen recently, and more connections that are needed to address—and to influence—the new realities.

Of course, food connects us all! We all need to eat. We all have preferences. We all like to make choices—especially about food!

But when it comes to food—especially milk, meat and eggs—let’s be careful that the wealthier ones of us don’t allow our choices or the voices about our choices to impact on those who have little or no choice and for whom these foods would make an immense difference to their wellbeing.

There are some connections that relate to this overall theme and which are part of those new realities—new connections that influence and deliver.

Food system connections

  • With ‘more food’ needed to feed ‘more people’, we need to better connect how food is produced, transported, processed, marketed and consumed
  • We need to understand the connections among the many ways that foods are produced and their impacts on the environment
  • We need to understand and address the multiple trade-offs as well as connections involved in making our food systems truly sustainable

For small- and medium-sized livestock enterprises in low- and middle-income countries, where the people–livestock connections are still very close and where demand for milk, meat and eggs is growing fastest, the oft-cited connections now are between livestock and the environment and livestock and human health.

But let’s not forget other connections:

  • Livestock provide livelihoods, jobs and incomes for more than a billion people
  • Women, who in lower-income countries make up two-thirds of all mixed crop-and-livestock farmers, have a unique intersection with livestock
  • Household stock are often the only asset that women can own
  • Farm animals may be the only means for a girl to go to school
  • Cattle, buffaloes, camels, sheep, goats, pigs and poultry and their many products provide women with nutritious food, or, if they sell those foods, with the income needed to buy other foods, to feed their families
  • And germane to today’s topics is livestock’s role in ‘agroecology’ and the ‘circular bioeconomy’ (‘closing the loop’). Because small and medium production enterprises often take the form of integrated crop-livestock systems, they are already operating as a circular bioeconomy, albeit one that needs improved efficiency and productivity. Or these enterprises take the form of pastoral herding systems, which play essential roles in, and present new opportunities for, environmental stewardship of the world’s vast rangelands.

Globally, we have the UNFSS (United Nations Food Systems Summit), COP26 (United Nations Climate Change Conference), N4G (Nutrition for Growth global pledge drive) and CBD (United Nations Convention on Biological Diversity) all being held in just in the last quarter of 2021. These meetings are connecting people, conversations, ideas, commitments and investments.

Pandemic lessons about connections

  • The pandemic has painfully but usefully reminded us just how globally connected we all are. Perhaps Dr Tedros’ pandemic mantra—‘No one is safe until we are all safe’—needs to be expanded to global food systems—‘No one is fed or nourished until we are all fed and nourished’
  • We’ve seen how ‘connected science’ delivered (spectacular) vaccine solutions
  • And we’ve seen how vaccines alone will not suffice; we need similarly focused connections within and among institutions, policymakers, government officials and socio-economists
  • And, of course, the pandemic has underscored the need to understand the connections between people, animals and environments within a ‘One Health’ paradigm

Let me now turn to three connections that still must be established, developed and strengthened—three connections that are themselves interconnected!

Three new food system connections needed

Connections to diversity

  • Reality for each of us depends very much on our local context, which very much differs depending on where and how we live. This is particularly true of livestock, which globally play multiple and very different roles, involve very different species, and are raised to produce a range of commodities in very different environments and under very different circumstances.
  • Because these different realities are often overlooked, debates about the roles of livestock, for example, can get polarized, with contrasting views about whether livestock are part of the solution, or part of the problem, in addressing the new food system realities.

I’m as guilty as anyone of having this kind of polarized (unconnected) viewpoint. Working in the developing world, I have thought that the ‘livelihoods’ livestock provide are more important in poor than in rich countries. I was wrong of course. People in wealthier countries employed in livestock production, processing, trading, retailing, etc. are just as dependent on livestock as the millions raising farm animals in poorer countries. That to me just emphasizes the need for very different pathways to reach a united goal to improve our food systems.

Or think, for example, of the pathways needed in the developing world for a smallholder mixed farmer, or a medium‑sized dairy cooperative member, or a pastoral herder, or a female head of household, or a traditional village elder or a young urban entrepreneur, and think of the many traders and processors of livestock foods and the many people providing feed and veterinary and other inputs and services to livestock farmers. Think of the variety of animal husbandry practices: from massive dairies in China to medium‑sized enterprises raising a few hundred pigs in the emerging economies of Asia, to family farms raising one or two cows and a handful of goats and chickens in Africa. What this huge diversity tells me is that a sustainable development trajectory—and the actions and science needed to drive it—will differ greatly depending on where one starts from, and with what resources.

Connections to science

While global food trends right now are heading in the wrong direction—with increasing numbers of people descending into poverty and hunger—our globalized world has, paradoxically, more new knowledge, more science and innovation, more enabling technologies than ever before.

As the pandemic has shown us, ‘connected science’ can deliver miracles such as rapidly developed vaccines against a new pathogen. But to make a bigger, and more equitable, difference in a diverse world, that science must be connected to, and contextualized within, a broad and diverse set of institutional, policy and social environments.

Connections to investments

We heard last week at the UNFSS of several large financial commitments to realizing the better food systems we aspire to. We must make those financial connections also work for these ‘new realities’, even when those realities are challenging, conflicting, confusing or paradoxical. By connecting people from different worlds, donors from different countries, ideas from different disciplines, innovations from different communities with a wealth of new science and knowledge, we can make the difference that makes the difference.

Let’s connect!

Let’s deliver!

Watch a video of Tarawali’s short (7-minute) talk here: https://youtu.be/QOJlSeY0kxE

DevRes 2021: Takeaways that may help us in reaching SDGs in low-income countries

Published

This blog post is written by Adan Martinez Cruz, Senior Lecturer at the Department of Forest Economics and SLU Global coordinator.

From 14 June to 16 June 2021, DevRes 2021 allowed us to exchange insights on challenges and opportunities to accomplish the 2030 Agenda –with a focus on low-income countries. Originally scheduled for June 2020 to take place at UmeĂ„ University campus, DevRes went digital. The success of this adaptation strategy can be illustrated by the 500 registered participants from all over the world, the 125 speakers in 51 sessions, and the variety of topics covered.

I was fortunate to chair two sessions and I will tell you my takeaways from these sessions.

During the “Gender and inclusion in agriculture” session, we learnt about the relevance of empowering women to fight poverty among smallholder farmers in Nigeria, and about the role of ethnicity and gender in adopting agroforestry strategies in Vietnam. In particular, Mai Phuong Nguyen, who works at World Agroforestry, reported her findings from semi-structured interviews to 60 farmers (30 men and 30 females) across three provinces of northwestern Vietnam. These interviews explore preferences, constraints, and opportunities to adopt agroforestry practices among Thai and H’mong people. These two ethnic minorities rely on farming sloped land, which results on high levels of soil erosion –hence the need to explore the opportunities for adoption of agroforestry. The finding I wish to highlight here is the difference across gender in interest and perceptions about benefits from agroforestry –women are less certain about what agroforestry entails, and therefore are less interested in adopting agroforestry practices. This difference seems to be originated in the different channels of information that men and women have access to –while men have formal and informal learning channels, women rely mostly on informal channels. The implication is that formal agricultural extension services, which are not currently reaching out to women, must be tailored to inform women or otherwise agroforestry practices may spread at a slower pace than desired.

During the “Climate change –resilience, mitigation, and adaptation” session, we discussed how climate impacts efficiency of subsistence farming in Ethiopia, the effect of the Sloping Land Conversion Program on Chinese farmers’ vulnerability to climate change, and how capital assets enable resilience to water scarcity among small farmers in Indonesia. Francisco X. Aguilar, who is Professor at the Department of Forest Economics in SLU, and co-authors have explored the association between rural livelihood capitals (natural, human, social, financial, and physical) and the avoidance of, adaptation to, and inability to withstand water scarcity among 200 small farmers in South Sulawasi, Indonesia. Their findings illustrate not only heterogeneity in the association but also the relevance of social and human capitals as assets to enable resilience. In particular, physical and natural assets in the form of irrigation infrastructure and direct access to water sources were saliently associated with resilience to water scarcity; factors associated with capacity to adapt were more nuanced with social capital being closely linked. Years of farming experience as a form of human capital asset was strongly associated with resiliency.

DevRes aims to explore the challenges that require societal transformation in order to accomplish the 2030 Agenda with its 17 Sustainable Development Goals (SDGs). As illustrated by the couple of findings I have highlighted here, DevRes 2021 delivered insights that we have taken with us in our pursue to design policies that empower citizens of low-income countries to accomplish by their own means the 2030 Agenda and its SDGs.