Ethiopia assesses Environmental Monitoring and Assessment for Agenda 2030

Published

The blog post is written by Kevin Bishop, Professor at the Department of Aquatic Sciences and Assessment, SLU, and Solomon Gebreyohannis Gebrehiwot, Assistant professor at the Ethiopian Institute of Water Resources (EIWR) and Water and Land Resources Center (WLRC), Addis Ababa University, Ethiopia

A field excursion to considering the possibilities for environmental monitoring and assessment in Ethiopia. Photo: Kevin Bishop

There is a global consensus to work towards the UN’s Sustainable Development Goals (SDGs). But to set a course to these goals, and then navigate through the trade-offs and synergies between these goals is a challenge. Environmental Monitoring and Assessment (EMA) has been a central feature of how many industrialized societies, including Sweden, have tried to achieve environmental goals for half a century now. But Agenda 2030 involves the economic and social dimensions as well as the environmental dimensions of sustainable development.

A group of researchers from Ethiopia, Chile and Sweden, all with ties to SLU, looked at how EMA could be renewed for a more effective role in Agenda 2030 that encompasses socio-economic dimensions and respects the complexity of knowledge needed to understand nature’s contribution to socio-economic development (Bishop and Jönsson, 2020). The three national settings were chosen to focus on how EMA’s potential looked in societies with different income levels, with a focus on issues surrounding forests and waters.

One outcome of the project is a new article examining EMA in Ethiopia (Gebrehiwot et al., 2021). National experts and practitioners were gathered and interviewed by the country’s Academy of Science to look at what the country currently has in the way of EMA, but also opportunities for the future, since the possibilities for observing ecosystems have developed tremendously in recent years, including remote sensing, genomics, and citizen science.

The stakeholder discussions in Ethiopia revealed a strong and shared belief that evidence-based assessments can help manage the challenges posed by the simultaneous pursuit of multiple SDGs. The most remarkable finding for those involved in the expert meetings was discovering the existence of more environmental M&A than the expert group had anticipated. That highlighted a weakness that many of the participants already suspected, namely that the environmental data which does exist are not well-communicated. The information resources remain largely unknown to decision-makers and even relevant experts, to say nothing of secondary stakeholders and the public at large. Given how Europe and other industrialized societies struggle to achieve the goals of “open science”, the issue of data documentation and sharing is an even more acute challenge in low-income countries.

Solomon and other experts gathered at the Ethiopian Academy of Sciences, Feb 2018. Photo: Kevin Bishop

Strengthening existing public institutions, encouraging local participation through citizen science and adoption of up to date technologies to create national platform for EMA would be an important step to fill in the gaps identified in this study. Furthermore, this would facilitate addressing the needs for more integrated monitoring and assessment of the interactions between the use and management of water, forests, and other resources as well as to better navigate synergies and conflicts between SDGs.

Common to all the countries in the study, the participants in the Ethiopian study found that the evidence base must be translated into socially accepted knowledge in order to navigate potential synergies and conflicts between different SDGs. A strength Ethiopia has for this is the presence of government financed extension agents in villages across the country. This meant that developments in the evidence-base could be rapidly communicated and worked with down to the level of individual land-owners. Potential was also recognized in Ethiopia for more participatory environmental analysis methods that could promote a more inclusive dialogue on natural resource management.

Together with the other two case studies in Sweden and Chile, a theoretical framework regarding legitimacy and governance has been developed that could help evolve EMA into a powerful new tool which builds on a long tradition of environmental monitoring and assessment, but with the strength of co-production of knowledge suited to the vision of Agenda 2030, and a focus on learning processes in governance, creating versatility for different contexts (Alarcon et al., 2021).

This blog post is based on a published report:
Gebrehiwot, S. G., Bewket, W., Mengistu, T., Nuredin, H., Ferrari, C. A., & Bishop, K. (2021). Monitoring and assessment of environmental resources in the changing landscape of Ethiopia: a focus on forests and water. Environmental Monitoring and Assessment, 193(10), 1-13.


Alarcon Ferrari, C., Jönsson, M., Gebreyohannis Gebrehiwot, S., Chiwona-Karltun, L., Mark-Herbert, C., Manuschevich, D., Powell, N., Do, T., Bishop, K. & Hilding-Rydevik, T. (2021). Citizen Science as Democratic Innovation That Renews Environmental Monitoring and Assessment for the Sustainable Development Goals in Rural Areas. Sustainability, 13(5), 2762.

Bishop, K. and Jönsson, M. (2020). Med miljöanalys som verktyg: Skogen och Agenda 2030. KSLA Nytt och Noterat, 2020(1): 4-5)

 

More connections: Sustainable livestock opportunities and new food system realities

Published

Shirley Tarawali, assistant director general of the International Livestock Research Institute (ILRI) and chair of the Global Agenda for Sustainable Livestock, made a keynote presentation at an Agri4D online conference, Food Systems for New Realities, held 28–30 Sep 2021. The conference was organized by SLU Global and the Swedish International Agriculture Network Initiative (SIANI), with support from the Swedish International Development Cooperation Agency (Sida). This blog post was first published by ILRI 4 Oct 2021. 

Tarawali’s remarks, ‘More connections: Sustainable livestock opportunities and new food system realities’, pulled examples from the livestock sector to illustrate the importance of existing, new and diverse connections to deliver on the future sustainable, inclusive, resilient and inclusive food systems we all aspire to.

A transcript of her remarks follows.

As I considered the theme of this conference, Food systems for new realities, and the core question it addresses, as I brainstormed with colleagues—and I particularly want to acknowledge ILRI’s Susan MacMillan and David Aronson in this regard—I found myself circling back again and again to the new connections that have arisen recently, and more connections that are needed to address—and to influence—the new realities.

Of course, food connects us all! We all need to eat. We all have preferences. We all like to make choices—especially about food!

But when it comes to food—especially milk, meat and eggs—let’s be careful that the wealthier ones of us don’t allow our choices or the voices about our choices to impact on those who have little or no choice and for whom these foods would make an immense difference to their wellbeing.

There are some connections that relate to this overall theme and which are part of those new realities—new connections that influence and deliver.

Food system connections

  • With ‘more food’ needed to feed ‘more people’, we need to better connect how food is produced, transported, processed, marketed and consumed
  • We need to understand the connections among the many ways that foods are produced and their impacts on the environment
  • We need to understand and address the multiple trade-offs as well as connections involved in making our food systems truly sustainable

For small- and medium-sized livestock enterprises in low- and middle-income countries, where the people–livestock connections are still very close and where demand for milk, meat and eggs is growing fastest, the oft-cited connections now are between livestock and the environment and livestock and human health.

But let’s not forget other connections:

  • Livestock provide livelihoods, jobs and incomes for more than a billion people
  • Women, who in lower-income countries make up two-thirds of all mixed crop-and-livestock farmers, have a unique intersection with livestock
  • Household stock are often the only asset that women can own
  • Farm animals may be the only means for a girl to go to school
  • Cattle, buffaloes, camels, sheep, goats, pigs and poultry and their many products provide women with nutritious food, or, if they sell those foods, with the income needed to buy other foods, to feed their families
  • And germane to today’s topics is livestock’s role in ‘agroecology’ and the ‘circular bioeconomy’ (‘closing the loop’). Because small and medium production enterprises often take the form of integrated crop-livestock systems, they are already operating as a circular bioeconomy, albeit one that needs improved efficiency and productivity. Or these enterprises take the form of pastoral herding systems, which play essential roles in, and present new opportunities for, environmental stewardship of the world’s vast rangelands.

Globally, we have the UNFSS (United Nations Food Systems Summit), COP26 (United Nations Climate Change Conference), N4G (Nutrition for Growth global pledge drive) and CBD (United Nations Convention on Biological Diversity) all being held in just in the last quarter of 2021. These meetings are connecting people, conversations, ideas, commitments and investments.

Pandemic lessons about connections

  • The pandemic has painfully but usefully reminded us just how globally connected we all are. Perhaps Dr Tedros’ pandemic mantra—‘No one is safe until we are all safe’—needs to be expanded to global food systems—‘No one is fed or nourished until we are all fed and nourished’
  • We’ve seen how ‘connected science’ delivered (spectacular) vaccine solutions
  • And we’ve seen how vaccines alone will not suffice; we need similarly focused connections within and among institutions, policymakers, government officials and socio-economists
  • And, of course, the pandemic has underscored the need to understand the connections between people, animals and environments within a ‘One Health’ paradigm

Let me now turn to three connections that still must be established, developed and strengthened—three connections that are themselves interconnected!

Three new food system connections needed

Connections to diversity

  • Reality for each of us depends very much on our local context, which very much differs depending on where and how we live. This is particularly true of livestock, which globally play multiple and very different roles, involve very different species, and are raised to produce a range of commodities in very different environments and under very different circumstances.
  • Because these different realities are often overlooked, debates about the roles of livestock, for example, can get polarized, with contrasting views about whether livestock are part of the solution, or part of the problem, in addressing the new food system realities.

I’m as guilty as anyone of having this kind of polarized (unconnected) viewpoint. Working in the developing world, I have thought that the ‘livelihoods’ livestock provide are more important in poor than in rich countries. I was wrong of course. People in wealthier countries employed in livestock production, processing, trading, retailing, etc. are just as dependent on livestock as the millions raising farm animals in poorer countries. That to me just emphasizes the need for very different pathways to reach a united goal to improve our food systems.

Or think, for example, of the pathways needed in the developing world for a smallholder mixed farmer, or a medium‑sized dairy cooperative member, or a pastoral herder, or a female head of household, or a traditional village elder or a young urban entrepreneur, and think of the many traders and processors of livestock foods and the many people providing feed and veterinary and other inputs and services to livestock farmers. Think of the variety of animal husbandry practices: from massive dairies in China to medium‑sized enterprises raising a few hundred pigs in the emerging economies of Asia, to family farms raising one or two cows and a handful of goats and chickens in Africa. What this huge diversity tells me is that a sustainable development trajectory—and the actions and science needed to drive it—will differ greatly depending on where one starts from, and with what resources.

Connections to science

While global food trends right now are heading in the wrong direction—with increasing numbers of people descending into poverty and hunger—our globalized world has, paradoxically, more new knowledge, more science and innovation, more enabling technologies than ever before.

As the pandemic has shown us, ‘connected science’ can deliver miracles such as rapidly developed vaccines against a new pathogen. But to make a bigger, and more equitable, difference in a diverse world, that science must be connected to, and contextualized within, a broad and diverse set of institutional, policy and social environments.

Connections to investments

We heard last week at the UNFSS of several large financial commitments to realizing the better food systems we aspire to. We must make those financial connections also work for these ‘new realities’, even when those realities are challenging, conflicting, confusing or paradoxical. By connecting people from different worlds, donors from different countries, ideas from different disciplines, innovations from different communities with a wealth of new science and knowledge, we can make the difference that makes the difference.

Let’s connect!

Let’s deliver!

Watch a video of Tarawali’s short (7-minute) talk here: https://youtu.be/QOJlSeY0kxE

DevRes 2021: Takeaways that may help us in reaching SDGs in low-income countries

Published

This blog post is written by Adan Martinez Cruz, Senior Lecturer at the Department of Forest Economics and SLU Global coordinator.

From 14 June to 16 June 2021, DevRes 2021 allowed us to exchange insights on challenges and opportunities to accomplish the 2030 Agenda –with a focus on low-income countries. Originally scheduled for June 2020 to take place at Umeå University campus, DevRes went digital. The success of this adaptation strategy can be illustrated by the 500 registered participants from all over the world, the 125 speakers in 51 sessions, and the variety of topics covered.

I was fortunate to chair two sessions and I will tell you my takeaways from these sessions.

During the “Gender and inclusion in agriculture” session, we learnt about the relevance of empowering women to fight poverty among smallholder farmers in Nigeria, and about the role of ethnicity and gender in adopting agroforestry strategies in Vietnam. In particular, Mai Phuong Nguyen, who works at World Agroforestry, reported her findings from semi-structured interviews to 60 farmers (30 men and 30 females) across three provinces of northwestern Vietnam. These interviews explore preferences, constraints, and opportunities to adopt agroforestry practices among Thai and H’mong people. These two ethnic minorities rely on farming sloped land, which results on high levels of soil erosion –hence the need to explore the opportunities for adoption of agroforestry. The finding I wish to highlight here is the difference across gender in interest and perceptions about benefits from agroforestry –women are less certain about what agroforestry entails, and therefore are less interested in adopting agroforestry practices. This difference seems to be originated in the different channels of information that men and women have access to –while men have formal and informal learning channels, women rely mostly on informal channels. The implication is that formal agricultural extension services, which are not currently reaching out to women, must be tailored to inform women or otherwise agroforestry practices may spread at a slower pace than desired.

During the “Climate change –resilience, mitigation, and adaptation” session, we discussed how climate impacts efficiency of subsistence farming in Ethiopia, the effect of the Sloping Land Conversion Program on Chinese farmers’ vulnerability to climate change, and how capital assets enable resilience to water scarcity among small farmers in Indonesia. Francisco X. Aguilar, who is Professor at the Department of Forest Economics in SLU, and co-authors have explored the association between rural livelihood capitals (natural, human, social, financial, and physical) and the avoidance of, adaptation to, and inability to withstand water scarcity among 200 small farmers in South Sulawasi, Indonesia. Their findings illustrate not only heterogeneity in the association but also the relevance of social and human capitals as assets to enable resilience. In particular, physical and natural assets in the form of irrigation infrastructure and direct access to water sources were saliently associated with resilience to water scarcity; factors associated with capacity to adapt were more nuanced with social capital being closely linked. Years of farming experience as a form of human capital asset was strongly associated with resiliency.

DevRes aims to explore the challenges that require societal transformation in order to accomplish the 2030 Agenda with its 17 Sustainable Development Goals (SDGs). As illustrated by the couple of findings I have highlighted here, DevRes 2021 delivered insights that we have taken with us in our pursue to design policies that empower citizens of low-income countries to accomplish by their own means the 2030 Agenda and its SDGs.

Agroforestry – an act to fight climate change?

Published

Written by: Agnes Bondesson, communication officer at SLU Global, Swedish University of Agricultural Sceinces

Agroforestry - pines and cotton
Agroforestry with pine and cotton
Photo: National Agroforestry Center/Wikimedia commons

22nd of April is every year dedicated to our beloved earth, so called Earth day. SLU has research projects in a wide range of areas and today it is time to give attention to one of them, agroforestry. This is a method where trees are planted among crops and animals and it is seen as a sustainable nature-based solution which can contribute to several of UN’s Sustainable Development Goals.

Agroforestry provides various ecosystem services which are beneficial both locally and globally in the fight against climate change. This way of farming can limit the amount of greenhouse gases in the atmosphere by binding carbon and nitrogen in vegetation and soil. At the same time, the cultivation system contributes to positive effects in the local area, as trees shade, bind soil and increase resistance to pests, drought and floods, as well as providing access to firewood and a variety of nutritious food. It creates a favourable microclimate around the trees for a variety of flora and fauna.

SLU has several research projects running about agroforestry, many in collaboration with other universities and organisations around the world. SLU Global asked Ulrik Ilstedt, researcher at SLU, a few quick questions about agroforestry.

1. How does SLU work with research in agroforestry?

There are many people at SLU who work with different aspects of agroforestry in low-income countries, both from economic, social and environmental aspects. I myself have worked mostly with how agroforestry can contribute to carbon binding and how it also affects the water balance. Especially the water balance has been a much debated issue where hydrologists have previously thought that all trees – in forest or agricultural land – have a negative impact on water supply as trees use more water than grass and crops.

For tree planting organisations and the general public it has been difficult to realise that forests are bad for water supply. Many people think of the forest as a sponge that sucks in water. Instead, we have developed a new theory in which we believe that indeed the trees’ soil-improving ability can contribute to more water entering the soil and groundwater but up to a certain limit. If the trees grow too fast and too dense, their water consumption will take over and there will be water loss compared to pure agricultural land.

2. What are the benefits in a global sustainability perspective?

You can get a productive and sustainable cultivation system that can at the same time maintain many environmental values, such as biodiversity, water regulation and carbon storage. Because the trees contribute to soil improvement, farmers who are poor can cope with less or no commercial fertilizer. There are also advantages to being able to get different alternative products from the same fields and to spread risks.

3. What projects are SLU currently running?

One of the larger collaborative projects led by one of my colleagues, Gert Nyberg, where several researchers from SLU work together with other universities, is about studying different aspects of an area in Kenya. The organisation Vi-agroforestry previously used the area to influence how the pasture was organised. Through a better organisation of the pasture with fences, grass and trees could come back into the area and the pasture became more productive. This collaboration project is now being developed in other areas with both Swedish and international partners.

I myself would be particularly interested in continuing with the water issue. We now know that it is possible to grow trees and at the same time increase the water supply. Can we improve the groundwater supply further through maintenance with for example what kind of trees we use, if we prune them and how the trees are spread.

4. If you mention some positive effects with agroforestry, what would it be?

Agroforestry can contribute to many of the Sustainable Development Goals, for example to combat poverty and hunger (# 1 and # 2), better access to water (# 6), to help us combat and manage climate change better (# 13) and to contribute to higher biodiversity (#15). Agroforestry can also contribute to give women more time and opportunity to develop and take control of resources.

More information:
News page at SLU website
Debate article at Aktuell Hållbarhet (Swedish)

Trees and water: don’t underestimate the connection

Published

By: Douglas Sheil, Norwegian University of Life Sciences
This blog was originally posted in CIFOR Forest News

Trees have extraordinary powers, especially when it comes to water. But such powers must be wielded with care.

  Lake Bam, in the Centre-Nord region a hundred kilometers from Ouagadougou, is undergoing enormous environmental challenges such as silting, drastic reduction of aquatic life and conflicts of interest the 28,000 people living from this lake see their livelihoods threatened, Burkina Faso. Photo by Ollivier Girard/CIFOR

Trees have extraordinary powers. They provide shade, cool the local climate, draw carbon dioxide from the air, and can repair and replicate themselves while running on little more than sunlight and rainwater (Pokorný 2018). They also contribute numerous goods and services like fruit, wood and soil improvement with a wide choice of species and varieties suitable for different needs and conditions. But such powers should be wielded with care.

On the 5th of July 2019 Science published an article by Jean-François Bastin and colleagues titled “The global tree restoration potential”. In it, they explain how, without displacing agriculture or settlements, there is enough space to expand the world’s tree cover by one-third or around one billion hectares. Such increased forest would eventually reduce atmospheric carbon by about a quarter. A lot could be said about this proposition, much of it supportive. But in a brief comment piece just published in Science, colleagues and I highlight some reservations along with some even bigger opportunities. We focus on water.

The idea that the protection and restoration of tree cover could improve the climate while providing other benefits is well established. Indeed, there have been numerous international programs based on this including REDD “Reducing Emissions from Deforestation and Degradation”, the Bonn Challenge, which seeks to reforest and restore degraded land, as well as various related programs.

So what is new here?

Well, what Bastin et al. have done is estimate the scale of this opportunity and the contribution that restoring tree cover could make. For example, they list such estimates country by country as a “scientific evaluation” with relation to restoration targets specified under the Bonn Challenge. Under these targets, and those specified by the New York Declaration on Forests, an impressive list of countries (59) have undertaken to end deforestation and to restore 350 million hectares of land by 2030. They note that several of these countries have committed to restoring an area that “exceeds the total area that is available for restoration”. They note how these results “reinforce the need for better country-level forest accounting”.

Yet there is a paradox lurking within these claims. The authors state that their estimates are not “future projections of potential forest extent”. So what are they?

Aerial view of the Amazon rainforest and river, near Manaus, the capital of the Brazilian state of Amazonas. Brazil. Photo by Neil Palmer/CIAT

In brief, their assessment represents an estimate of potential tree cover assuming current environmental conditions and no influence or modifications arising from the trees themselves. But large-scale changes in tree cover would modify these conditions.

Trees and forests influence the availability of water and water influences the degree to which a landscape can support trees. While current tree cover reflects current conditions, any assessment of the prospects for large-scale changes in tree cover must account for how these changes will influence those conditions. Potential tree cover should reflect the conditions that would exist with that tree cover.

This may seem esoteric, which may explain why it was not raised in the extensive media coverage, but these details matter. They matter a lot.

Access to adequate fresh water is a key development challenge and is central to the United Nations Sustainable Development Goals. Around half a billion people suffer insufficient fresh water year-round while many more face seasonal scarcity. Such shortages cause hardship and are widely believed to play an increasing role in the complex of issues that increase the likelihood of conflict and migration. With relatively fixed fresh water resources and a growing population, the global fresh water resources per person are declining.

As we highlight in our comment, trees influence the availability of water both locally and regionally. Neglecting these influences undermines the value of the estimates and renders them near meaningless. This affects both the technical aspects of the estimates—the variables used to predict tree cover would change, and more importantly, the wider implications for people and life on the planet.

Tree cover influences water availability through a range of processes and mechanisms. Only some of these are well understood. But we know enough to know there will be impacts.

Impacts can be negative. Where trees use a lot of water this can accentuate local water scarcity. There are many examples where dense plantations have caused a decline in local stream flows and depleted groundwater when compared to open lands. This is crucial, but far from being the whole story.

Impacts can also be positive. This has been shown by studies in Burkina Faso where landscapes with some tree cover captured several times more water than otherwise comparable tree-free landscapes. In this case, the costs of increased water use are more than compensated by the increased soil infiltration and moisture storage. Trees and forest also provide water vapour and condensation nuclei (the particles that promote cloud formation) that can contribute to rainfall elsewhere. Thus, it is clear that tree cover supports rainfall downwind—and many people depend on such rainfall.

The power of such recycling suggests that if tree cover in drylands can be expanded in the right manner, it can generate increased rainfall, thus opening the opportunity to increase regional moisture and land able to support trees and forests. In addition, an exciting new theory, the Biotic Pump, suggests that forest cover plays a fundamental role in generating the winds that carry moisture into continents. This theory conforms with observations in the Amazon region concerning how rainfall relates to changes in air pressure, and how forest derived moisture controls the monsoon. In effect, we could develop a system that waters itself and thereby regreens the world’s deserts. We could, for example, imagine returning a much wetter climate to the Sahel of Africa or to Western Australia.

So how can we avoid the negatives and promote the positives of increased tree cover? We don’t yet know the optimal way. Likely we may not even agree what “optimal” implies. My personal view is that, if we emphasise the protection, expansion and restoration of natural vegetation that can regenerate and maintain itself (rather than industrial plantations), the positives are generally more likely. The rationale is that nature has evolved effective systems for distributing and maintaining water. These are the systems that kept the world green and productive long before people got involved. (Such restoration is what Bastin and colleagues are suggesting, though much of the media attention discussed “tree planting” more generally as if this is equivalent—it isn’t).

 General View of the Brazilian Amazon. Photo by Neil Palmer/CIAT

But there are plenty of good reasons to promote tree cover even in productive landscapes and to identify how we might green large areas of our planet. The potential to bring more water into currently arid regions seems a real opportunity. We can also look for ways to ensure that plantations, where justified, are developed without wider environmental costs. Natural systems can provide both template and inspiration.

But it remains true that negative impacts can still result, especially as what may be optimal at a continental scale may not be ideal at more restricted scales, and patches of regenerating forest may deplete local water even if it boosts rain downwind. When tree cover does boost groundwater in arid regions there can be additional challenges if this raises salt within the soil profile.

Looking beyond water there is no shortage of additional concerns. For example, we need to ensure people benefit, we need to protect key grasslands and we need to ask why the tree cover was depleted in the first place.

There are many good reasons to protect and restore tree cover and other natural vegetation—wherever and to the degree that that is possible. There are also plenty of good reasons to promote agroforestry and to encourage even scattered tree cover where that is possible within productive landscapes.

Our point is that there will be wider impacts than those on atmospheric carbon alone. Many impacts are likely to be positive, increasing greenness, stabilising rainfall, and reducing biodiversity losses. But widespread tree planting can also cause harm, displacing people and biodiversity and contributing to water scarcity.

The power of trees is often underestimated—it is a transformative power with capacity to achieve great good and great harm. Please use it wisely.

Original Science Article:

Bastin, J.F. et al. 2019. “The global tree restoration potential”, Science, Vol. 365, Issue 6448, pp. 76-79, DOI: 10.1126/science.aax0848 

Comment letter to Bastin et al.:

Sheil, D. et al. 2019. “Forest restoration: Transformative trees”, Science, Vol. 366, Issue 6463, pp. 316-317, DOI: 10.1126/science.aay7309 

Bastin et al. response:

Bastin, J.F. et al. 2019. “Forest restoration: Transformative trees-Response”, Science, Vol. 366, Issue 6463, pp. 317, DOI: 10.1126/science.aaz2148