All posts by agbn0001

Is there a definite value of water?

This blog post is written by Jennie Barron, Professor at the Department of Soil and Environment; Agricultural water management, SLU

Photo: Jennie Barron, SLU

Water is a multifaceted resource from simply being served our daily glass of water, to the complex flow through the landscapes to produce food, recreation and other ecosystem services. Because of the multiple uses and benefits of water, there are many challenges of valuing and weighting benefits and impacts for the different uses and users.

This becomes evident in times of shocks and in crises. For example such as when the landscape  or society runs out of water, as in the extreme drought of 2018 in Sweden, or when 2 billion of people lack health and sanitation facilities to simply wash hands to cope with COVID-19. The past years global and local crises of COVID-19 has left no one untouched. And the crisis of COVID-19, has really reoriented the issue of conversation of water, and the value of water. 

The projections of water related crises is on the rise, as food security, sustainable development and climate change takes place. The need to find metrics, process and practise to weight the benefit and impacts of water scarcity will therefore be the key. This year’s World Water Development Report is thus a first step to summarise and synthesise the current perspectives on valuing water. It builds on the recent developments such as the High Level Panel of Water  Statement (2018)  “Every drop counts” and  assessments on water security for food and nutrition by FAO (2020)  “ Overcoming water challenges in agriculture“.

 Going from high level statements to reality and practise

 Agriculture is such sector that is an intense water appropriator globally, both in using rainfall, and extracting water for irrigation. In addition, agriculture can have a negative impact on water quality, as a source of agro chemical pollution both from crop and livestock production. Valuing water for irrigation is a particular challenge, as the fresh water from surface and groundwater sources is contested for many users, including the environment, aquatic benefits and food. However, in regions where many people are affected water scarcity and hunger, the value water might bring into agriculture can make significant livelihood improvements. For example in the work assessing benefits for smallholder farmers in the dry area of Bundelkhand , India led by Garg et al (2020), evidence-based soil and water innovations introduced, improved landscape water use and the farmer incomes by up to 170%. At the same time downstream water availability reduced with 40% in a normal rainfall year. Here a dialogue on upstream benefits and values, may need to be negotiated with downstream users.  In a case of livestock systems intensification in Tanzania (Noetenbart et al 2020), choosing the most resource saving option of intensification can have negligible impacts on water use. For example a comparison of livestock production accounting for water appropriation into the fodder, showed that extensive dryland grazing could only marginally increased total water appropriation, whilst improving water productivity with 20-50%, when combining animal health, breeding and feed options.  Here the most water demanding livestock scenario was the system with import of high protein (and more water demanding) fodder crops.

Photo: Jennie Barron, SLU

 Investing to secure water for agriculture is an enabler of development. 

Globally, about 40% of food comes from irrigation-dependent crop production systems, helping to support nutritious and all year food supply. Whereas regions and countries are running out of water, we have other regions that could better support irrigation development to adapt to weather extremes and bring both steady supply of food and nutrition and income. In Sub-Saharan Africa, less than 3% of the crop area is under formal irrigation. Yet smallholder farmers are evolving and investing themselves in so-called farmer led irrigation, despite a number of technical , social and financial challenges (Lefore et al 2019).

It is becoming evident that water is a critical enabler in development and Agenda 2030 for human health, incomes, food and nutrition as well as ecosystem services. Water needs to be bothsafeguarded for multiple benefits, as well as negotiated and explored in some cases, for additional uses in anthropogenic landscapes. By opening for reflecting multiple values, we can develop data, tools and weight benefits and trade-offs more just and equal among uses and users. In 2022, it is the +30 years of the Rio Declaration (UN Earth Summit 1992), including the statement of Integrated water resource development (IWRM) Let’s hope that water is back on the agenda for enabling development as, carefully negotiated for its multiple use and value.


What’s cooking at CGIAR?

Photo credit: UN Sustainable Development Goals

SLU has a long tradition of partnerships with the CGIAR, both at the institutional and individual scientist-level. The CGIAR is the world’s largest agricultural research and innovation network with 8 000 staff globally, focused on agriculture in low and middle income countries.

The CGIAR is currently reorganizing and has launched a new research and innovation strategy with the aim to transform food, land and water systems in a climate crisis. The One CGIAR vision for 2030 is a world with sustainable and resilient food, land and water systems that deliver diverse, healthy, safe, sufficient and affordable diets, and ensure improved livelihoods and greater social equality, within planetary and regional environmental boundaries. Climate change and the climate crisis is at the forefront of the new strategy that describes the food systems challenges in the contexts of six major regions across Africa, Latin America and the Caribbean, South Asia and Southeast Asia and the Pacific.

The strategy targets multiple Sustainable Development Goals (SDGs) and strives to achieve measurable benefits across five Impact Areas: (1) Nutrition, health and food security, (2) Poverty reduction, livelihoods and jobs, (3) Gender equality, youth and social inclusion, (4) Climate adaptation and mitigation, and (5) Environmental health and biodiversity. Three-year investment plans are set up for 2022-2024 and a number of CGIAR Initiatives (research programs) are under development. These initiatives will replace the previous Research Programs (CRPs).

The CGIAR will work with regional and national partners including universities and research institutes, business actors, and international partners. Scientists at SLU together with partners in low- and middle income countries from collaborations in research and capacity development are well positioned to contribute to this work. SLU’s global policy for Agenda 2030 points to several opportunities for cooperation between SLU and the CGIAR to contribute to the SDGs. To facilitate and support the dialogue between scientist at SLU and the CGIAR, a one page capacity statement based on SLU’s policy and the CGIAR strategy is made available here.

For more information, please contact the authors:
Ingrid Öborn, Professor at the Department of Crop Production Ecology, ingrid.oborn@slu.se
Ulf Magnusson, Professor at the Department of Clinical Sciences’, ulf.magnusson@slu.se
Sara Gräslund, Head of SLU Global, sara.graslund@slu.se

Why do we collaborate?

The next chapter of SLU – Vietnam collaborations

Photo: Agnes Bondesson, SLU

Looking back

More than 35 years ago, the Swedish University of Agricultural Sciences’ (SLU) initiated contact with Vietnamese universities with support from Sida/SAREC. The early research capacity development programmes aimed to strengthen individual and institutional research capacity in Vietnamese priority areas. The programmes have been part of the development agenda to reduce poverty and contribute to the socio-economic development of Vietnam. Several departments and faculties at SLU have over the years been involved in the collaborations. Some of these projects have also involved Swedish MSc and PhD students who have been able to conduct fieldwork in Vietnam. Many programmes have been large long-term projects involving several universities and research institutes in Vietnam and resulting in a large number of Vietnamese MSc and PhD graduates.

SLU Global conducted a detailed evaluation report to increase learning from experiences and to feed into our present and future international collaborations. Focus of the evaluation was on initiatives within the sectors relevant to agriculture, rural development, and forestry. The time scope for the study was 1977-2018. Collaborations result in both long-listed research projects and education. Both key activities provided capacity development at institutional level/national level as well as individuals, and Vietnamese society.

Looking forward into future

1 October 2020, SLU global opened up a new chapter of collaborations by inviting SLU and Vietnamese researchers to an online workshop aiming to be a discussion forum for researchers, teachers and others to explore opportunities and interest in future collaborations based on past experiences between SLU and Vietnam. The purpose with this workshop was to create new possible networks and exchange knowledge between researchers, teachers and others at SLU and in Vietnam. More than 55 researchers were participating in small group discussions to potential future collaborations and what tools we need to make the collaborations possible. Tools, as we recognised from our experiences were not only required research competent, but also administrative supports from the universities. SLU and Uppsala University has joint representative office in Hanoi, providing supportive services connecting researchers and students, including alumni, between the two countries. Moreover, the workshop also made visible financial opportunities from Vietnam, Sweden and the EU.

A small but important step to the future is to allow researchers/teachers between the two countries to discuss their common interests as well as challenges. During the workshop, researchers were divided into 8 groups according to research interests. Common topics discussed during this workshop are varies including, land transformation, climate change, transformation from rice to horticulture, small scale forestry, pest control, agri-business, remote sensing in forest research, payment for forest environmental forestry scheme (PES), animal health, agroforestry etc. Moreover, the workshop group discussions continued to discuss the Joint teacher student exchanges and the access to new online courses. One concrete example is the course on bioinformatics, which is being developed to be given fully digitally by SLU. Voicing from the discussion, researchers from both countries would like to see the expansion of the collaboration beyond Sweden-Vietnam, but South East Asia as target region.

One of the main challenges to continue the engagement is the limitation of funding, considering Vietnam is no longer a priority for international development. Researchers can overcome this challenge by searching new financial opportunities, such as EU and the private sector, as well as focusing on early career development for researchers from low and low-middle income countries. Decreasing of financial support does not stop the ‘Will to Collaborate’. With Covid-19 in the background, online communication channels and platforms will continue to increase, which benefits a long term conversation between researchers and teachers between the two countries.

This blog post was written by Alin Kadfak, Communications Coordinator, SIANI

International collaborations – the key to tackle climate change?

Vietnam seminar
Moderator Annika Åhnberg and evaluator Solveig Freudenthal. Photo: Emelie Olsson

“The reason we evaluate, is to learn.” With these words, SLU’s Vice-Chancellor Maria Knutson Wedel opened up the seminar about SLU’s long collaborations with Vietnam. The importance of international partnerships to tackle the current global challenges was highlighted and there was a joint emphasis from many researchers that it is time to look at the future.

Collaborations between SLU and universities in Vietnam were initiated more than 35 years ago and have had several positive outcomes. During these years, many programmes funded by Sida/SAREC took place, aimed to strengthen individual and institutional research capacity in Vietnamese priority areas. This summer, the report, which evaluates the collaborations between SLU and Vietnam, was completed. The evaluation was in focus at the seminar Tuesday 22 September. The seminar, hosted by SLU, was moderated by Annika Åhnberg, Honorary Doctor at SLU and former Swedish Minister of Agriculture.

SLU’s Vice-Chancellor Maria Knutson Wedel at the seminar. Photo: Emelie Olsson

SLU’s Vice-Chancellor Maria Knutson Wedel opened the seminar by thanking everyone involved and highlighted the importance of long collaborations. State Secretary to the minister for rural affairs, Per Callenberg, sent his greeting to the seminar participants via a recorded video and Vietnam’s ambassador to Sweden, H.E. Phan Dang Duong, welcomed everyone. This was followed by a presentation of the evaluation by Dr. Solveig Freudenthal, the independent consultant that performed the evaluation. 

The main findings of the report were very positive, according to Dr. Freudenthal. Much of the research results generated from the collaborations have been used practically in rural areas in Vietnam and benefitted agriculture, forest production and rural development. All 54 Vietnamese interviewed for the report live and work in Vietnam today. Many came back to Vietnam after their studies and are still at the same university where they started their careers. Numerous have attained senior positions at their faculties. The collaborations between SLU and the Vietnamese universities have also enabled many MSc and PhD students from Sweden to do fieldwork in Vietnam and Vietnamese students to do parts of their degrees at SLU.

All panelists were participating in Zoom. Photo: Emelie Olsson

After Dr. Freudenthal’s presentation, a panel consisting of Sweden’s ambassador to Vietnam H.E. Ann Måwe, Vice-Rector of Hue University of Agriculture and Forestry, Le Dinh Phung, Ministry of Agriculture and Rural Development, Hoang Huong Giang, Associate Professor at SLU, Sofia Boqvist, and Head of Research Cooperation Unit at Sida, Anna-Maria Oltorp, discussed the importance of agricultural and environmental sciences and international collaborations in tackling the current global challenges.

“There is so much we have in common”, one of them mentioned, connecting it to climate change, and calling future collaborations “necessary”. Another statement made was that research is important in society, but research that is being implemented in society is even better. This is necessary to face the global challenges and work towards Agenda 2030.

One of the effects of supporting several universities and institutions in Vietnam is the strong research and social networks that have been developed between these institutions. The long-term personalised networks of the Swedish and Vietnamese participants have also resulted in strong research relations, according to Dr. Freudenthal, which could continue (given that funding is available), not as capacity development programmes but as joint research projects between equal partners.

An open discussion with all participants, where important and valuable comments and reflections came up, ended the seminar. A key lesson from Dr. Freudenthal’s evaluation is that exposure to international research and networks is crucial to develop conducive research environments. This also became evident during the seminar. Several participants showed an interest in future research collaborations between Sweden and Vietnam, which left much to discuss at the more in-depth workshop 1 October.  

Why are people still dying of rabies?

This article was written by Johanna Lindahl, researcher at the Department of Clinical Sciences; Division of Reproduction, SLUThe findings and conclusions in this blog post are those of the author and do not necessarily represent the views of SLU.

Stray dogs. Photo: Javad Esmaeili, pixabay

Imagine that you have two children. Both children are bitten by a dog that seems to have rabies, but you cannot know and now the dog has been killed. If the dog really had rabies, then the children will get it. If the children get a vaccination in time, they will not die. But the hospital is far away, the vaccine costs money and you can only afford to do this for one child, and maybe you will not make it on time. That money you would need for food for the family, and the rest of the family will suffer if you travel with one child. Maybe the dog did not really have rabies. Maybe the child that you chose to save will anyway not make it in time. What shall you do?

Rabies is a disease with 100% case fatality, but it is also a fully vaccine-preventable disease. So why are people still dying?

Globally, canine rabies is still one of the zoonotic diseases (diseases spreading to humans from animals) responsible for most human deaths (1). The vast majority of the 59 000 human deaths worldwide (2) are the result of bites from rabid dogs, with most deaths occurring in Asia (3–5). Children are most affected, probably because they are more easily bitten by dogs. In many countries, the number of cases is probably underestimated since there is no official rabies monitoring system. Since dogs are the main reservoir and source of infection for humans, vaccination of dogs is recognised as the most cost-effective and permanent solution to rabies prevention (6,7).

Numerous recent programmes have facilitated rabies control in low-resource settings, however these costly programmes have not yet achieved sufficient and sustainable vaccination coverage of 70%, which is required to eliminate canine rabies (8–10). Expansion of rabies elimination programmes in low-resource countries has been constrained by many factors:

  1. It is difficult to buy and transport the vaccines for injections, since they have to be kept cold all the time. Many countries have difficulties maintaining a cold chain, or reaching remote populations with vehicles.
  2. Many dogs are free roaming or aggressive and therefore difficult to catch and vaccinate.
  3. The dogs are often not living for very long, and therefore it is necessary to vaccinate all dogs in an area regularly to make sure that at least 70% of them are protected.
  4. Even when vaccinated, some dogs are in too poor condition for them to create enough antibodies to be protected. This can be because of malnutrition, or because of other infections, for example with parasites.

Even though vaccination of dogs is relatively expensive, the costs of human post-exposure vaccination, meaning vaccination that occurs after a person is bitten but before disease has started, is even larger. If given in good time, post-exposure vaccination will stop the disease from developing, but in many countries, there are not so many places where the vaccines are administered, and the victim has to pay for it themselves. As an example, in Cambodia people bitten by dogs can get the vaccine for free, but there are only three places in the whole country that provides this. Thus, most people that are potentially exposed to this horrible disease never gets vaccinated and may die undiagnosed in their home. Once a person develops the disease, there is nothing a hospital can do except to try to ease the symptoms. In many low and middle-income countries there is no provision for this, and the victim would be sent home to die.

Even if the reality is grim in many parts of the world, dog-transmitted rabies could be eradicated if enough dogs would be vaccinated, either by injections or by vaccine-baited food. So why has it not happened? The answer to this may lay in the lack of collaboration between human and veterinary sectors. This can be illustrated in this example from Europe: A person is bitten by a cat, imported from another country and not vaccinated. The veterinary authority agrees that it may be rabies, and the cat has to be autopsied to make the diagnosis. However, they judge it not urgent enough to pay for express transport and do the autopsy the same day, instead the animal will be autopsied the next Monday, after the weekend. However, the health sector, who has gotten the bitten patient, judge that they cannot take the chance, and initiate the post-exposure treatment, which not only has a high cost, but also some suffering for the patient. The savings done by the veterinary authority was minimal compared to the costs incurred by the hospital, resulting in higher costs for the government, which in the end funds both.

Vaccination costs for eradication of rabies in the dog population would be carried by the veterinary sector, and the savings would benefit the human health sector. This points to the need of a One Health approach with increasing collaboration between both sectors, for improved health for all. We can stop rabies, but we need to think outside our siloes and boxes and work together.

In our new project “Man’s best friend: A crossborder transdisciplinary One Health approach to rabies control in dogs in Southeast Asia”, led by the Zoonosis Science Centre at Uppsala University, we look at both dog population dynamics, antibody coverage, as well as the knowledge of people choosing to vaccinate their dogs to understand how we can improve the situation. This is done together with institutes in Vietnam, Cambodia and Lao. We aim to apply for more funds to also investigate alternatives with oral vaccination in the future, which hopefully can save more lives.

References

1.             Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current status of rabies and prospects for elimination. Lancet [Internet]. 2014 Oct 11 [cited 2018 Apr 3];384(9951):1389–99. Available from: https://www.sciencedirect.com/science/article/pii/S0140673613627075

2.             OIE. Report of the meeting of the OIE biological standards commission [Internet]. Paris; 2017. Available from: http://www.oie.int/fileadmin/Home/eng/Internationa_Standard_Setting/docs/pdf/BSC/A_BSC_Sept2017.pdf

3.             Taylor L, Nel L. Global epidemiology of canine rabies: past, present, and future prospects. Vet Med Res Reports [Internet]. 2015 Nov [cited 2017 Mar 7];Volume 6:361. Available from: https://www.dovepress.com/global-epidemiology-of-canine-rabies-past-present-and-future-prospects-peer-reviewed-article-VMRR

4.             Shwiff S, Hampson K, Anderson A. Potential economic benefits of eliminating canine rabies. Antiviral Res [Internet]. 2013 May 1 [cited 2017 Mar 24];98(2):352–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0166354213000582

5.             Cleaveland S, Lankester F, Townsend S. Rabies control and elimination: a test case for One Health. Veterinary [Internet]. 2014 [cited 2017 Mar 25]; Available from: http://veterinaryrecord.bmj.com/content/175/8/188.short

6.             Wallace RM, Undurraga EA, Blanton JD, Cleaton J, Franka R. Elimination of Dog-Mediated Human Rabies Deaths by 2030: Needs Assessment and Alternatives for Progress Based on Dog Vaccination. Front Vet Sci [Internet]. 2017 Feb 10 [cited 2018 Apr 3];4:9. Available from: http://journal.frontiersin.org/article/10.3389/fvets.2017.00009/full

7.             Zinsstag J, Lechenne M, Laager M, Mindekem R, Naïssengar S, Oussiguéré A, et al. Vaccination of dogs in an African city interrupts rabies transmission and reduces human exposure. Sci Transl Med [Internet]. 2017 Dec 20 [cited 2018 Apr 7];9(421):eaaf6984. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29263230

8.             Elser JL, Hatch BG, Taylor LH, Nel LH, Shwiff SA. Towards canine rabies elimination: Economic comparisons of three project sites. Transbound Emerg Dis [Internet]. 2018 Feb 1 [cited 2018 Apr 3];65(1):135–45. Available from: http://doi.wiley.com/10.1111/tbed.12637

9.             Kayali U, Mindekem R, Yémadji N, Vounatsou P, Kaninga Y, Ndoutamia AG, et al. Coverage of pilot parenteral vaccination campaign against canine rabies in N’Djaména, Chad. Bull World Health Organ [Internet]. 2003 [cited 2018 Apr 3];81:739–44. Available from: https://www.scielosp.org/scielo.php?pid=S0042-96862003001000009&script=sci_arttext&tlng=

10.          Anyiam F, Lechenne M, Mindekem R, Oussigéré A, Naissengar S, Alfaroukh IO, et al. Cost-estimate and proposal for a development impact bond for canine rabies elimination by mass vaccination in Chad. Acta Trop [Internet]. 2017 Nov 1 [cited 2018 Apr 3];175:112–20. Available from: https://www.sciencedirect.com/science/article/pii/S0001706X16305101

Deagrarianisation: From South Africa to Europe

This blog post was originally posted on SIANI:s website by researcher Klara Fisher, SLU.

Photo: Klara Fischer, SLU

In recent years, rural people have increasingly abandoned agriculture. This trend, often referred to as deagrarianisation in academic debate, occurs in both smallholder contexts and industrial farming. However, the abandonment of farming has the clearest negative effects on rural food security and livelihoods in the smallholder farms of the Global South.

On May 5, 2020 SIANI and the South Africa Sweden University Forum (SASUF) co-hosted a webinar about deagrarianisation where experienced researchers from Europe and South Africa presented, discussed and compared agricultural trends in South Africa with those of Sweden, Hungary and Ukraine. The webinar attracted an audience of 100 people and generated lively discussions between participants and presenters.

Today, farmers across the world experience increased competition, high costs of inputs and low price at farm gates. In the face of the increasing pressure on agriculture, farmers react differently. Large commercial farmers often see upscaling as the only viable option for remaining competitive.

As a result, South Africa’s large commercial farms as well as European farms are becoming fewer and larger, when more competitive farms purchase or lease the land of less competitive neighbours.

Cecilia Waldenström describes here how this general trend has played out in three regions in Sweden. In the south of the country with the best agricultural lands there was a clear trend of upscaling and increased mechanisation. In more marginal areas with lower quality agricultural land and longer distances to markets farmers employed strategies of low input -low output production, similar to what is seen in many smallholder contexts in the Global South. Cecilia also pointed out the lack of availability of agricultural education and advisory services in marginal regions, a trend seen equally in the Global South.

Brian Kuns and Ildikó Aztalos Morell presented research from two post-communist contexts in Eastern Europe. Under the soviet authoritarian regime, land was commonly allocated in large field areas outside of the villages, while most households also had a plot in the village for subsistence. There are clear similarities between this land allocation and the top-down instituted reorganisation of fields into communal areas outside villages and the homelands during apartheid in South Africa.

In Hungary and Ukraine the landscape creates by the soviet authoritarian regime has facilitated elite capture and large-scale investments. In the Ukraine smallholders today lease out their plots for small sums of money to food processing oligarchs and foreign investors and this has led Ukraine to host some of the largest commercial farming operations in the world.

In South Africa such investments are rare, and instead, there is widespread abandonment of fields in communal areas as described in some detail during the webinar by ProfessorSheona Shackleton.

Most of smallholders in South Africa as well as in Ukraine, testify that it is difficult to work on the communal fields individually. These areas are far away from their house and it takes time to get there, so it is difficult to tend to the field. Lack of capital is also a major barrier for investing in machinery, fencing and inputs.

While Ukrainian farmers make a profit from their farms by leasing the land to a large landowner, it is important to remember that today’s industrial farms employ very few people, which has been contributing to joblessness and rural poverty.

David Neves and Flora Hajdu described the increasing importance of the South African welfare system, with child grants and pensions, for reducing vulnerability and food insecurity in the face of deagrarianisation and increasing joblessness.

Several of the presenters pointed out how the general trend of deagrarianisation does not mean that farming is no longer important for rural people. Also, there are countertendencies to the general trend. In Sweden and across Europe, contestations of the industrialisation and upscaling of farming are emerging in slow food movements, local farmers’ markets and efforts to preserve traditional crop varieties, where farmers capitalise on other values than quantity and price.

Paul Hebinck provided examples where South African smallholders had decided to continue to farm their fields, or re-open them, and how they take pride in maintaining their agricultural lifestyles, local varieties of seed and livestock.

The presenters also noted that both in South Africa and Ukraine many people have homegardens, growing their food, even when they abandon field farming. Thus, abandonment of distant fields isn’t the same as the abandonment of farming.

Flora Hajdu also described how the small money from welfare payments could be important for being able to reinvest in intensifying household gardening and the local sale of vegetables.

Despite the general trend of deagrarianisation, the seminar showed that it does not equal to abandoning of agriculture – farming will remain an important livelihood strategy for those living in rural areas and with access to land, although it will not always be managed in the same way as in the past.


This post is written by Klara Fischer, researcher at SLU. Her research concerns how smallholders’ adopt and adapt new technologies and practices, the relationship between smallholders’ practices and agricultural policy and advice and broader societal discourses on agriculture development and natural resource management.

Controlling health threats that could spark future pandemics

Written by: Kristina Osbjer, Researcher at the Department of Clinical Sciences, SLU and Technical Specialist for Animal Health, Food and Agriculture Organization of the United Nations.
The findings and conclusions in this blog post are those of the author and do not necessarily represent the views of the Food and Agriculture Organization of the United Nations.

Bat samling
Bat sampling. Photo: Kristina Osbjer

Although the Coronavirus disease (COVID-19) pandemic came as a surprise to some, the seeds of a Coronavirus pandemic, the weak signals, have been present for more than a decade. As governments and the civil society across the globe are struggling with containing COVID-19 and limit the impact, the research community can play an important role in formulating research to heed warnings and prevent devastating impacts of the next pandemic.

The COVID-19 origin is unknown, but we do know that Corona viruses are circulating in animals, in particular bats, and that some of these Corona viruses have an ability to transmit to humans. Most emerging infectious diseases (EIDs) and almost all recent pandemics originate from animals, most commonly wildlife, and the emergence is often involving close interactions between wildlife, livestock, and people with an elevated risk detected in forested tropical regions experiencing land-use changes and where wildlife biodiversity is high.

Asia – a hotspot for EIDs

South, Southeast Asia and China are recognised as hotspots for EIDs. The region is undergoing fast economic development, resulting in societal and environmental changes. Parallel with a growing population and rising incomes, the demand for higher-value and quality food such as meat is rapidly increasing. A preference for fresh meat from animals butchered at the counter together with limited access to chilling facilities lead to meat being commonly purchased in ‘wet markets’ where live animals are sold and slaughtered on site. In the case of avian influenza and SARS, viral spread to people from poultry and wildlife, respectively, was traced back to wet markets. Wet markets are also suspected to have played a key role in the initial spillover of Corona virus to humans, resulting in COVID-19. High animal density, limited hygiene and biosecurity practices in these wet markets are contributing to dissemination of viruses. Efforts have been made to change, and in some countries to ban wet markets—especially where many species, including wildlife are mixed. A temporary ban in wildlife trade was recently imposed in China as a result of COVID-19, however, enforcement of such bans remains difficult. The strong consumer demand for fresh meat and a range of social, economic and cultural factors contribute to sustain the markets.

Wet market in Asia. Photo: Kristina Osbjer

The rising demand for meat is spurring expansions in industrial-scale animal farming

More than half of the world’s pork and poultry is produced in Asia. In 2018, China alone had around half of the global pig herd and accounted for half of the global pork consumption. The rising demand for meat is spurring expansions in industrial-scale animal farming resulting in challenges in preventing and confining diseases. Low profit margins and weak animal welfare requirements commonly result in poor farm biosecurity and animal health management which in turn lead to an increased use of antibiotics. Antibiotic resistance, largely driven by the antibiotic consumption, is considered a growing global health threat and it is estimated that the livestock industry in China alone, will use up to 30% of the global antibiotic production by 2030.

The fast pig expansion has also resulted in the emergence of new diseases. In 2018 African Swine Fever (ASF) hit China as the first country ever in Asia, spreading rapidly to nearby countries leading to a loss of a quarter of the world’s pig population by the end of 2019. The ASF infect only wild and domestic pigs, but the high death rates and enforced massive culling to prevent further disease spread has led to huge economic losses and pork prices soaring to record highs. The extent of the impact of ASF on the global live animal and meat trade was unpredicted, and the disease has put a high pressure on Governments and a shift in animal movements. The lack of pork and higher pork prices have encouraged Asian consumers to substitute towards alternative protein sources, which most likely have changed the meat sourcing and supply in wet markets, including wildlife.  

Poultry sampling. Photo: Domingo Caro

A stronger multi-sectoral approach for disease prevention and control

The ASF spread to Asia and the global emergence of COVID-19 are reminders of how vulnerable our interconnected world is to global impact of diseases in humans and animals and highlight the need for broader systems thinking in the fight against EIDs. A single sector approach, neglecting the human-animal-environment interface and the socio-economic and cultural bearings of diseases will cause future failures in controlling health threats that could spark future pandemics. A stronger One Health approach in which multiple sectors work together to enhance health security and better public health outcomes needs to be fully adopted. Early evidence indicates that the health and economic impacts of the COVID-19 are being disproportionately borne by poor people. The biggest impact will be seen in low and middle income countries. It is of global concern to strengthen capacities in low and middle income countries to prevent, detect and control infectious diseases at the source, with an emphasis on early identification of, and response to, health threats in animals before they cause serious public health, economic, and development concerns. Here, the research community can play an important role in raising local research capacities and generate science to enable evidence-based policies and decision making to prevent future pandemics and safeguard public health and livelihoods.

Covid-19 lessons: Wildlife as our ally, not our enemy

Written by Joris P. G. M. Cromsigt, Senior Lecturer at the Department of Wildlife, Fish and Environmental Studies, SLU.

Zebra
Photo: Joris Cromsigt, SLU.

The origin of the covid-19 pandemic, like previous major zoonotic disease outbreaks such as Ebola and HIV, has been linked to wildlife and the consumption of wild meat. Although the exact source of covid-19 still is a matter of debate, the repeated emphasis on wildlife as the original source is putting wildlife and the consumption of wild meat in a bad spot. Others, however, have emphasised that the problem is not the eating of wild meat per se. The problem lies in unsafe handling and processing of wild meat as well as in large-scale international trade and wildlife markets that keep wild species under crowded conditions and sell and slaughter wild meat on site. If wild meat is prepared locally immediately after the hunt following normal sanitary standards, the risk of zoonotic disease is negligible. Sweden and its moose harvesting culture are an excellent example of this. The problem also lies in the massive degradation of wildlife habitat, increasing the contact between wildlife and humans and in the management of the livestock-wildlife interface, since zoonoses frequently first jump from wildlife to livestock and then to humans. What I miss in the current debate, however, is the bigger picture. The fact that humans have been destroying wildlife and the ecosystems they live in for over 10,000 years. Below, I argue that this destruction lies at the root of many of our sustainability challenges, including increased zoonotic disease risk, and that solutions for these challenges lie in the large-scale restoration of wildlife and their habitats.

Restoring wildlife to fight zoonotic diseases

Many studies have highlighted that restoration of mammal diversity reduces disease risk, because predators and competing species prevent disease-carrying species to reach high densities and because in diverse communities species vary in susceptibility to infection by a pathogen. A recent meta-analysis by colleagues at my department at SLU confirmed that across the world increasing animal diversity reduces disease risk. Similarly, colleagues showed how predators, such as fox and stone marten in the Netherlands and Tengmalm’s owls in northern Sweden, reduce zoonotic disease risk. Using the owls as an example, they highlight that wildlife may even act as an effective early warning system of future zoonotic disease outbreaks. A recent paper goes even further by linking the Late Quaternary large mammal extinctions to the emergence of > 100 zoonotic disease outbreaks of the last 60 years.  The authors suggest that the concept of herd immunity goes beyond human-human interaction and that reduced interaction between human and non-human animals during the last 10,000 years reduced our resistance to emerging zoonotic diseases. This thought-provoking hypothesis remains to be tested, but what these examples really tell us is that we should not treat wildlife as the cause of the pandemic, but rather as part of the solution to fight it. Restoring wildlife communities and their habitats may be a very effective strategy to reduce zoonotic disease risk.

Photo: Graham Kerley

Rewilding as a nature-based solution for global sustainability challenges

I would like to zoom out even further by emphasizing that the current pandemic is not “just” a zoonotic disease problem but also a symptom of the global sustainability crisis. Solutions should thus focus more broadly on restoring planetary sustainability. Recent work suggests that the restoration of wildlife and their habitats can be a major part of these solutions. In the Megafauna & Sustainability unit we study how large mammals can be part of a nature-based solution for several of the Sustainable Development Goals. For example, in the programme Wilder Rangelands, a collaboration with Nelson Mandela University and Utrecht University, we look at the climate change mitigation and adaptation benefits of restoring native wild herbivore communities in African rangeland systems. In another example, we look at the effects of urban rewilding and greener cities on wildlife and people living in these cities.

Our work echoes others that highlights rewilding, i.e., the restoration of wildlife communities and their habitats, as a major natural solution. Rewilding increases the carbon sequestering capacity of ecosystems worldwide, from elephants and other mammals in our tropical rainforests, to wild grazers in the world’s grasslands, and the great whales in our oceans. Closer to home, reindeer help slow-down warming of the tundra in northern Scandinavia by limiting woody encroachment, and increasing surface albedo. Rewilding may also be a sustainable, long-term, solution for managing the risks of wildfires that are increasingly ravaging large parts of the world and even help mitigate the global phosphorus crisis through restoring global nutrient recycling. I could give many more examples.

How covid-19 threatens global wildlife conservation

Despite these examples, we still do not take wildlife restoration serious enough. For many high-level decision makers it remains a “nice to have” that is low on the priority ladder. In fact, the global response to the current pandemic forms a huge threat to global wildlife conservation. The emphasis on wildlife as the origin of covid-19 risks further alienating humans from wildlife, degrading support for its conservation. More urgently, the current pandemic highlights the weakness of a conservation model that depends on income from ecotourism and philanthropy and times of economic prosperity. This model is currently rapidly collapsing due to short- and mid-term travel bans and longer-term effects on economies. Already, in many societies communities are going hungry and increasingly depend on “bushmeat” to survive the crisis. We face a serious risk of conservation entering the dark ages, further marginalising wildlife into increasingly small corners of the world. Ironically, this will likely further increase the risk of future zoonotic pandemics.

The urgency of embracing wildlife as a natural solution to our sustainability challenges

Now is the time to come with a new model to conserve and, especially, restore wildlife. We can no longer accept conservation and wildlife restoration in the margin, for the show or as an indulgence. We need a model that sees the restoration of wildlife and their habitats as a serious natural solution to heal our planet and thus ourselves. Initiatives, such as the EU’s green deal, provide a shimmer of hope but are not enough. We need a serious global “Marshall Plan” for wildlife restoration. Accepting wildlife as a natural solution asks for massive, wide-scale restoration beyond our protected areas and beyond the introduction of certain flagship species. Such rewilding should not be confused with a wilderness without humans but restore a natural world that humans can actively benefit from. Natural solutions are SLU’s core business and it is our responsibility to now speak out and step up. We are in the hot seat in terms of finding more sustainable, nature-based, solutions. The alternative, of course, is driving all remaining wildlife species, and their associated zoonotic diseases, to extinction. I do not want my children to inherit such a world. Solutions towards the current, and future, pandemics do not lie in further alienating us from wildlife. Solutions do not lie in treating wildlife as our enemy, but in embracing it as our ally.

COVID-19 and Food Security

Written by: Assem Abouhatab, Sofia Boqvist, Sara Gräslund, Ylva Hillbur and Rodomiro Ortiz
Swedish University of Agricultural Sciences (SLU)

Farming close to Mbeya, southeastern Tanzanian highlands.
Photo: Rodomiro Ortiz, SLU

Reflections on Sweden’s Global Contribution to Agenda 2030

During a short time span, COVID-19 has spread rapidly across the globe, resulting in hundreds of thousands of deaths. The underlying causes of the pandemic are linked to the virus crossing the species barrier from animals (likely wildlife) to humans, with subsequent spread within the human population. While the links between livestock and human health are well established and increasingly acknowledged, there is great potential in developing the One Health approach further. In 2019, the UN biodiversity panel established that emerging infectious diseases in wildlife, domestic animals, plants or people can be exacerbated by human activities such as land clearing and habitat fragmentation.

The outbreak has so far hit Europe, East Asia and North America the most and there is fear that the infection will spread uncontrolled in Africa with severe consequences for poor peoples’ health and food security. The World Food Program recently alerted the UN Security Council that the pandemic could push another 130 million people into hunger this year. Poor people are particularly vulnerable for infections like COVID-19 as they often live in areas with poor sanitary conditions, have restricted access to health care and lack economic safety nets.

While the outbreak of COVID-19 has led to both a global health emergency and is unfolding a global economic crisis, it could also result in food insecurity, particularly when food supply chains are disrupted. Preliminary reports show that the pandemic has indeed disrupted global agricultural supply chains; slowed down global agricultural trade; and obstructed transportation, logistics and distribution channels as borders have been shut. In this regard, about 16 countries have issued food export restrictions or bans to ensure national stock and avoid food price inflation. The spread of the pandemic has further disrupted many activities along the agri-food supply chains and posed significant challenges to the food systems, especially in low-income countries where employment, livelihoods, food and nutritional outcomes, and many other essential services are derived from agriculture. As an example, the number of people at risk of food security may rise to 50 million  in West Africa – a region in which 35% of the economy depends on agriculture.

The immediate threats posed by COVID-19 to agricultural supply chains include the disruption of rural labor markets, which may impede farming and food processing activities. Some food supply chains in low-income countries are facing challenges related to growers –particularly smallholders– accessing inputs for their farming, being in their fields for planting, cultivating and harvesting their crops or breeding and feeding their livestock, managing animal and plant health in their farming systems, and actively participating in the output markets to sell their produce. In addition, farm labor shortages may result from mobility restrictions, while urban food processing may be put on hold due to delays on getting raw materials. In terms of consumption, the closures of restaurants and reduced visits to grocery and food markets decrease demand for fresh food and livestock products, affecting producers and suppliers. Food demand in low income countries is closely linked to income, and the loss of income-earning opportunities could affect consumption. The International Food Policy Research Institute estimates that the pandemic may cause 140 million (of which 2/3 are from Africa and remaining 1/3  from South Asia) to fall into extreme poverty in 2020.

Grazing livestock, West Pokot, Kenya. Photo: Eva Wredle, SLU

Food supply chains may be further troubled when considering that many nations depend on trading among each other staples, animal feed, fertilisers, machinery or pesticides. Hence, in order to guarantee affordable access to safe food for meeting the demand of their populations, it is crucial that international trade continues. Another global recession may further reduce the demand for rural output and labour. The announced economic stimulus packages by many nations should therefore provide means for stimulating the recovery of the rural economy in low-income countries to build an agriculture that should be increasingly resilient to shocks such as pandemics. In this way, they will also show their commitment to Zero Hunger and meeting the targets of Sustainable Development Goal 2, aiming to warrant that everyone everywhere is able to eat enough good-quality food to ensure a healthy life. Such an objective needs to improve sustainably the agricultural productivity and increase the profits of smallholder farmers by allowing them to fairly access land, technology and both input and output markets.

Sweden has a strong commitment to Agenda 2030 and to supporting low-income countries as demonstrated by its international development cooperation, government strategies and research agendas.  In the current crisis, we must keep the momentum towards the Sustainable Development Goals and move into the post-pandemic era with an ambition to increase resilience of communities and sustainability of the food systems by:

  • Reinforcing international partnerships. International collaboration focusing on exchange of knowledge and ideas and mutual capacity development is crucial for a sustainable development across the globe. International collaboration and national development go hand in hand.
  • Increasing resilience and sustainability of the food systems. Climate change has profound impacts on the food systems. Increasing farmers’ resilience to climate change will reduce their vulnerability also to pandemics and other shocks. As described by the UN climate panel, there are great opportunities for response options that provide co-benefits for climate change mitigation and adaptation as well as food and nutrition security.
  • Implementing One Health approach in practice. In order to fight health issues at the human-animal-environment interface a multidisciplinary and holistic approach is needed. Increasing collaboration between sectors is crucial, with integration of human health, animal health and conservation and sustainable use of ecosystems, to prevent future pandemics and other health threats.
  • Enhancing the understanding of the effects of the pandemic on food security. Pandemics will happen again. So, we need to learn and adapt to be more resilient next time. It is important for all countries, including Sweden, to minimise the impacts of pandemics on domestic food chains and markets, e.g. the potential impact through disruptions to the global agricultural supply chains and agri-food trade.

International research cooperation will boost the productive and resilient capacity of low-income countries’ agriculture, particularly if embracing a holistic, transdisciplinary and enlarged One Health strategy; i.e., integrating human, animal, plant, soil and environmental health following an innovative approach for research in development under a changing climate. The outputs of such an approach will contribute to a fair remaking of the social contract that may emerge after the COVID-19 pandemic. To increase food and nutrition security for all, it is therefore crucial to keep the momentum towards Agenda 2030.


SLU contributes to Agenda 2030 through our mission to develop knowledge and capacity for sustainable management and use of the biological resources. To contribute to food security and Zero Hunger, we are for example currently partnering in Sida’s long-term bilateral research capacity programs through training of researchers in fields of relevance to food security in Bolivia, Cambodia, Ethiopia, Mozambique, Rwanda, Tanzania and Uganda. AgriFoSe2030 is another Sida financed program where SLU jointly with Stockholm Environment Institute, Lund University and the University of Gothenburg supports actors in Africa and Asia to develop capacities to translate food security science into policy for impact. SLU furthermore works with the African Union and the EU Commission to map and capture knowledge from past and ongoing initiatives for food and nutrition security in Africa in the Leap4FNSSA program to improve efforts in the future. Explore more of SLU’s global partnerships and programmes at www.slu.se/slu-global

Agroforestry – an act to fight climate change?

Written by: Agnes Bondesson, communication officer at SLU Global, Swedish University of Agricultural Sceinces

Agroforestry - pines and cotton
Agroforestry with pine and cotton
Photo: National Agroforestry Center/Wikimedia commons

22nd of April is every year dedicated to our beloved earth, so called Earth day. SLU has research projects in a wide range of areas and today it is time to give attention to one of them, agroforestry. This is a method where trees are planted among crops and animals and it is seen as a sustainable nature-based solution which can contribute to several of UN’s Sustainable Development Goals.

Agroforestry provides various ecosystem services which are beneficial both locally and globally in the fight against climate change. This way of farming can limit the amount of greenhouse gases in the atmosphere by binding carbon and nitrogen in vegetation and soil. At the same time, the cultivation system contributes to positive effects in the local area, as trees shade, bind soil and increase resistance to pests, drought and floods, as well as providing access to firewood and a variety of nutritious food. It creates a favourable microclimate around the trees for a variety of flora and fauna.

SLU has several research projects running about agroforestry, many in collaboration with other universities and organisations around the world. SLU Global asked Ulrik Ilstedt, researcher at SLU, a few quick questions about agroforestry.

1. How does SLU work with research in agroforestry?

There are many people at SLU who work with different aspects of agroforestry in low-income countries, both from economic, social and environmental aspects. I myself have worked mostly with how agroforestry can contribute to carbon binding and how it also affects the water balance. Especially the water balance has been a much debated issue where hydrologists have previously thought that all trees – in forest or agricultural land – have a negative impact on water supply as trees use more water than grass and crops.

For tree planting organisations and the general public it has been difficult to realise that forests are bad for water supply. Many people think of the forest as a sponge that sucks in water. Instead, we have developed a new theory in which we believe that indeed the trees’ soil-improving ability can contribute to more water entering the soil and groundwater but up to a certain limit. If the trees grow too fast and too dense, their water consumption will take over and there will be water loss compared to pure agricultural land.

2. What are the benefits in a global sustainability perspective?

You can get a productive and sustainable cultivation system that can at the same time maintain many environmental values, such as biodiversity, water regulation and carbon storage. Because the trees contribute to soil improvement, farmers who are poor can cope with less or no commercial fertilizer. There are also advantages to being able to get different alternative products from the same fields and to spread risks.

3. What projects are SLU currently running?

One of the larger collaborative projects led by one of my colleagues, Gert Nyberg, where several researchers from SLU work together with other universities, is about studying different aspects of an area in Kenya. The organisation Vi-agroforestry previously used the area to influence how the pasture was organised. Through a better organisation of the pasture with fences, grass and trees could come back into the area and the pasture became more productive. This collaboration project is now being developed in other areas with both Swedish and international partners.

I myself would be particularly interested in continuing with the water issue. We now know that it is possible to grow trees and at the same time increase the water supply. Can we improve the groundwater supply further through maintenance with for example what kind of trees we use, if we prune them and how the trees are spread.

4. If you mention some positive effects with agroforestry, what would it be?

Agroforestry can contribute to many of the Sustainable Development Goals, for example to combat poverty and hunger (# 1 and # 2), better access to water (# 6), to help us combat and manage climate change better (# 13) and to contribute to higher biodiversity (#15). Agroforestry can also contribute to give women more time and opportunity to develop and take control of resources.

More information:
News page at SLU website
Debate article at Aktuell Hållbarhet (Swedish)