Tag Archives: pandemic

What the pandemic taught us about the future of academic exchange

This blogpost is written by SLU students Emma Bergeling, Hanna Smidvik, Emil Planting Mollaoglu and Felicia Olsson. It was first published by SIANI.

As a result of the corona pandemic, the embedded practices of international travel in academia drastically changed. It suddenly became customary to replace business trips with digital alternatives whenever possible. Four students at SLU decided to study the implications. The results show a great untapped potential to reduce emissions from academic travel by conducting a larger share of academic activities digitally – without compromising the quality of research. 

In the turmoil that arose due to the travel restrictions put in place in March 2020, academics suddenly had to find solutions to continue their work in ways that did not include longer business trips. As students actively involved in discussions on universities’ greenhouse gas (GHG) emissions, we have for long been discussing the question of how academic business trips can be replaced by digital alternatives while maintaining the quality of work and research. 2020 presented an unexpected window of opportunity to seek an answer to that question and to gather academics’ experiences of the new reality without travels.

Academia in a burning climate crisis

The topic of GHG emissions from academia in general and academics’ air travel in particular has over the past decade been the focus of a growing number of publications in scientific journals and in mainstream media. This should be understood against a backdrop of factors such as i) the climate crisis itself,  ii) the notion of aviation as one of the fastest-growing sources of GHG emissions – characterised by a slow technological development unlikely to compensate for the estimated growth in demand, and iii) the recognition of academic researchers as among the highest emitters when it comes to international air travel, but also as potential leaders in a transition to a society within the planetary boundaries, if combining advocacy with changes in their own emission habits. This debate has resulted in various commitments, initiatives and responsibilities for higher education institutions (HEIs) around the world. With air travel being one of universities’ largest sources of GHG emissions, the need to critically scrutinise the norms and practices of academic travel is apparent. 

Prior to the pandemic, one could mainly speculate about the consequences of a drastic and large-scale reduction of travel in academia. University employees’ recently gained experiences of an increased use of digital solutions replacing longer business trips are therefore valuable in the search for new norms and practices of academic travel. In our study, we wanted to collect these experiences before they fell into oblivion. Through 25 semi-structured interviews and a survey with approximately 220 respondents, we sought to answer how employees at SLU experienced the cancellation of business trips and increased use of digital solutions. What trips worked well or not so well to replace? How was the quality of various academic activities (seminars, thesis defences, conferences, project meetings etc.) affected by being held digitally? 

Digital solutions replacing academic travel – what have we learnt? 

Our study shows that there is a great, untapped potential to reduce emissions from academic travel without compromising the general quality of the research and work. By adopting a more thought-through mix of digital and physical meetings, where a larger share of activities are conducted digitally, academia can reduce GHG emissions while keeping the quality as well as opening up for greater accessibility and participation.

A majority of the respondents were surprised by how well it had worked to replace longer business trips with digital alternatives, surprisingly well or beyond expectation were common formulations. An overwhelming majority (83%) of the survey respondents reported that their work in general had been mainly positively affected, equal parts positively and negatively affected, or not affected at all by the travel restrictions. 

Effects on work in general.

The academic activities that were experienced as most difficult to perform digitally were certain types of fieldwork and data collection, as well as activities that require spontaneous discussions and networking. We also found that meetings had become more efficient, but often at the expense of social interactions. On the other hand, well-structured meetings with a clear agenda between people that had previously met in person, as well as activities such as administrative meetings, project meetings and seminars, were perceived as most suited to perform digitally. These experiences were also mirrored in the survey respondents’ answers to what academic activities they thought could be held digitally – and to what extent – in the future. 

What type of activities the respondents believed could be replaced with digital solutions after the corona crisis and to what extent.

Furthermore, our results show how digital activities have enabled greater accessibility and equality within the academic community. Researchers that would not have had the time, resources or possibilities to travel to various meetings could now participate in digital events on more equal terms. On the other hand, lack of access to stable internet connection and issues of time differences made certain meetings less inclusive and/or equal. A key takeaway is therefore that digital events have the potential to be more inclusive than physical events but that it is important to actively consider equality and accessibility aspects in planning.

Another eye-opener following the increased use of digital solutions is how these were used to reach a wider audience with research and education. Instead of having farmers or beekeepers travel to SLU to listen to a seminar or to take part in a course, the material was recorded and made publicly available digitally. In a research project reference group consisting of farmers, more had been able to join the meetings now that they were held digitally, as opposed to before when the group had to travel to SLU for each meeting.

Our study also found that there seems to be a need to improve how we use digital solutions and start thinking beyond the mere translation of a physical event or meeting into a digital one. The informants had a lot of useful insights concerning this and we have summarised some of these insights in the figure below. 

Six hacks for successfull digital meetings.

Lastly, most informants lacked experiences of networking in digital events as this part had been neglected when events were digitised and they stressed a need for new and inventive ways of networking digitally, moving forward.

New ways forward for academia post-corona

The participants clearly did not want to continue travelling to the extent they had before the pandemic. However, no one wanted to completely move from physical meetings to only digital solutions. It is time we find a golden middle way. Many expressed that they had begun to think in new ways about what makes it important to meet in person and what makes a business trip necessary or not.

“I’m sure you can reduce the amount of physical meetings quite considerably, and that the [physical] meetings you do have you can spend some more quality and preparations at them so they are well motivated and so that you get the most out of them. ‘Which are the good conditions and perks of meeting in person?’ And then make sure to optimise them.” – Professor

Although the pandemic has closed countless doors, it should in some respects be seen as a window of opportunity to make new decisions and do things in new ways. An opportunity to address and rethink what is actually possible in terms of reducing academia’s GHG emissions.

“There are surely plenty of ways to do this that we have never tried, that might be better than what we are doing right now.”Professor

Interesting questions remain: what will university managements as well as researchers make of this opening, what insights and new learnings will they bring with them into the future? Which new practices will stay on to become embedded within the culture of academia in a post-corona context?  We argue that the answers to these questions should lead to emission reductions in line with climate science. That decisions about what business trips actually are necessary are based on thorough evaluations of experiences from this pandemic, and that digital solutions are used strategically to replace longer business trips. The urgent climate crisis, combined with this unexpected window of opportunity, makes it crystal clear that the time for academia to change embedded practices, rapidly reduce emissions and take on a leadership role is now. Our study has shown that all of this can be done without compromising the quality of research. So what are we waiting for?

Controlling health threats that could spark future pandemics

Written by: Kristina Osbjer, Researcher at the Department of Clinical Sciences, SLU and Technical Specialist for Animal Health, Food and Agriculture Organization of the United Nations.
The findings and conclusions in this blog post are those of the author and do not necessarily represent the views of the Food and Agriculture Organization of the United Nations.

Bat samling
Bat sampling. Photo: Kristina Osbjer

Although the Coronavirus disease (COVID-19) pandemic came as a surprise to some, the seeds of a Coronavirus pandemic, the weak signals, have been present for more than a decade. As governments and the civil society across the globe are struggling with containing COVID-19 and limit the impact, the research community can play an important role in formulating research to heed warnings and prevent devastating impacts of the next pandemic.

The COVID-19 origin is unknown, but we do know that Corona viruses are circulating in animals, in particular bats, and that some of these Corona viruses have an ability to transmit to humans. Most emerging infectious diseases (EIDs) and almost all recent pandemics originate from animals, most commonly wildlife, and the emergence is often involving close interactions between wildlife, livestock, and people with an elevated risk detected in forested tropical regions experiencing land-use changes and where wildlife biodiversity is high.

Asia – a hotspot for EIDs

South, Southeast Asia and China are recognised as hotspots for EIDs. The region is undergoing fast economic development, resulting in societal and environmental changes. Parallel with a growing population and rising incomes, the demand for higher-value and quality food such as meat is rapidly increasing. A preference for fresh meat from animals butchered at the counter together with limited access to chilling facilities lead to meat being commonly purchased in ‘wet markets’ where live animals are sold and slaughtered on site. In the case of avian influenza and SARS, viral spread to people from poultry and wildlife, respectively, was traced back to wet markets. Wet markets are also suspected to have played a key role in the initial spillover of Corona virus to humans, resulting in COVID-19. High animal density, limited hygiene and biosecurity practices in these wet markets are contributing to dissemination of viruses. Efforts have been made to change, and in some countries to ban wet markets—especially where many species, including wildlife are mixed. A temporary ban in wildlife trade was recently imposed in China as a result of COVID-19, however, enforcement of such bans remains difficult. The strong consumer demand for fresh meat and a range of social, economic and cultural factors contribute to sustain the markets.

Wet market in Asia. Photo: Kristina Osbjer

The rising demand for meat is spurring expansions in industrial-scale animal farming

More than half of the world’s pork and poultry is produced in Asia. In 2018, China alone had around half of the global pig herd and accounted for half of the global pork consumption. The rising demand for meat is spurring expansions in industrial-scale animal farming resulting in challenges in preventing and confining diseases. Low profit margins and weak animal welfare requirements commonly result in poor farm biosecurity and animal health management which in turn lead to an increased use of antibiotics. Antibiotic resistance, largely driven by the antibiotic consumption, is considered a growing global health threat and it is estimated that the livestock industry in China alone, will use up to 30% of the global antibiotic production by 2030.

The fast pig expansion has also resulted in the emergence of new diseases. In 2018 African Swine Fever (ASF) hit China as the first country ever in Asia, spreading rapidly to nearby countries leading to a loss of a quarter of the world’s pig population by the end of 2019. The ASF infect only wild and domestic pigs, but the high death rates and enforced massive culling to prevent further disease spread has led to huge economic losses and pork prices soaring to record highs. The extent of the impact of ASF on the global live animal and meat trade was unpredicted, and the disease has put a high pressure on Governments and a shift in animal movements. The lack of pork and higher pork prices have encouraged Asian consumers to substitute towards alternative protein sources, which most likely have changed the meat sourcing and supply in wet markets, including wildlife.  

Poultry sampling. Photo: Domingo Caro

A stronger multi-sectoral approach for disease prevention and control

The ASF spread to Asia and the global emergence of COVID-19 are reminders of how vulnerable our interconnected world is to global impact of diseases in humans and animals and highlight the need for broader systems thinking in the fight against EIDs. A single sector approach, neglecting the human-animal-environment interface and the socio-economic and cultural bearings of diseases will cause future failures in controlling health threats that could spark future pandemics. A stronger One Health approach in which multiple sectors work together to enhance health security and better public health outcomes needs to be fully adopted. Early evidence indicates that the health and economic impacts of the COVID-19 are being disproportionately borne by poor people. The biggest impact will be seen in low and middle income countries. It is of global concern to strengthen capacities in low and middle income countries to prevent, detect and control infectious diseases at the source, with an emphasis on early identification of, and response to, health threats in animals before they cause serious public health, economic, and development concerns. Here, the research community can play an important role in raising local research capacities and generate science to enable evidence-based policies and decision making to prevent future pandemics and safeguard public health and livelihoods.

Migrant workers exposed during Covid-19 crisis

Written by Alin Kadfak, SIANI-SLU Global Communicator and Researcher at the Department of Urban and Rural Development at the Swedish University of Agricultural Sciences, SLU. This blog post was originally posted at SIANI website.

Photo: SeaDave/Wikimedia Commons

The ongoing global pandemic may increase job insecurity and ruin rudimentary social welfare structures, amplifying the vulnerability of migrant workers.

I could not see many signs of concern when I was doing my fieldwork in Thailand and Myanmar in February – March 2020. Migrant workers in a Thai border city of Ranong were more concerned about such everyday struggles as ‘When to extend the work permit?’, ‘Where to find work today?’ or ‘How to send kids back to Myanmar when a few Burmese schools were forced to close down?’.

The fear of catching the virus was not a major concern. Due to the nature of temporary and short-term employment, migrant workers are more worried about losing their source of income than about health.

The ongoing pandemic, and the economic slowdown that’s likely to follow, will hit the poor harder than the rich, increasing the already stark inequality. Migrant workers are on the frontline of this crisis. Here is why:

Restricted mobility – Lack of movement may result in unemployment. Many countries are going into lockdown, so workers, the new and the returning, cannot travel to their destinations during the crisis. At the same time, millions of workers are looking forward to celebrating New Year with their family (Thailand, Laos, Cambodia and Myanmar share the same new year celebration mid-April every year). Like everybody else, migrant workers are advised against traveling home. If they do, they have to self-quarantine for 14 days upon their return. Two weeks of self-isolation is un-achievable when you and your family depend on daily wages and receive no compensation for the sick days.

Lack of social support – Social support and networks are crucial determinants of resilience. The importance of social capital is especially high in the time of crisis. Social exclusion is common to migrant workers, they rarely have social support networks in their host-communities, so accessing help in times of need is tough. For example, many migrant workers don’t speak Thai and don’t interact with their host communities on a daily basis, so they may stay behind on the up-to-date information about the COVID-19 spread and be unaware of the suggested precaution measures. What is more, even when migrant workers manage to build social relations in their host community, the crisis may disrupt collective memory production and weaken the capacity of newly formed social networks, meaning migrants members may be the first to get a cold shoulder.

Limited welfare – In Thailand, migrant workers have only recently started to receive a minimum wage, social security and health insurance. However, as the resources for testing and treatment of the virus are limited, migrant workers won’t be the first to access health services. At the same time, because of the short-term employment contracts and legal status in the host country, migrant workers will be the first to face layoffs too.

Living in limbo – Informal border crossing and illegal status provide migrant workers with an opportunity to earn a living without having to pay the fees for recruitment agencies or visas. However, living in the legally grey area may push workers into extremely vulnerable situations when crossing borders –  not only won’t they be covered by healthcare in origin and host countries, but also risk facing charges due to their illegal status. For example, it is still impossible to hold a record of how many migrant workers have lost their lives in Thailand after the tsunami of 2004.

What is social distancing? – Nearly 4 million Burmese, 2 million Cambodian and million Laotian labourers are working in Thai factories, construction sites, farms and fishing boats. These physical jobs require close contact. Minimum wages mean that migrant workers usually live in simple congested housing and in densely populated areas. The concepts of ‘social distancing’ or ‘working from home’ are far away from their everyday reality.

The COVID-19 crisis has not only accelerated the existing problems but also created many catch-22 situations for migrant workers in Southeast Asia and around the world.

These issues are complex and don’t have an easy answer, but one can start from granting migrants a legal status, allowing their families to be documented too. The implementations of the legalisation process should also reflect the reality of everyday life and the movement of migrants.

For instance, due to the nature of short-term employment, many migrant workers live by the border and move between Myanmar and Thailand every three weeks for 40 years and don’t get to live with their family. Besides, immigration regulations keep changing every year, which complicates any long-term planning, like education for their kids. And without basic education from either side of the border, the children of migrant workers have no means for upward mobility, so they follow in the footsteps of their parents, taking on low-paid unskilled jobs.

Additionally, the length of stay in a country for migrants is often attached to their employment status, which creates unbalanced power dynamics, favouring employers. However, one can promote labour rights by permitting migrant workers to unionize. This could allow for some forms of representation and negotiation between workers and employers. In the long term, improving legal status and worker representation will result in better welfare and improved living conditions.


How can we avoid another virus outbreak?

By: Maja Malmberg, Researcher at the Section of Virology at the Department of Biomedical Sciences and Veterinary Public Health at SLU and Ekaterina Bessonova, Communications Officer at SIANI. This blog was originally posted at SIANI website

Photo: Peter Schaefer (EyeEm) / Getty Images.

Few of us have ever imagined living through a pandemic. With all the global progress and achievements in medicine, a contagion seemed like something from the dark ages. And here we are, battling a noxious virus that set foot in every country, bringing disease, disruption and dismay.

Covid-19 outbreak is still unfolding, and we are yet to fully experience its effect on our societies and lives. However, it’s worth looking into how this coronavirus came about and reflecting on what can be done to diminish the possibility of another pandemic.

How did Covid-19 emerge?

SARS-CoV-2 or Severe Acute Respiratory Syndrome Coronavirus 2, the virus that causes Covid-19, is most closely related to coronaviruses in bats, meaning it’s a zoonosis – a disease that pass from an animal or insect to a human.

Other examples of zoonotic diseases include such scary names as HIV, Zika and Ebola. But Covid-19 belongs to the same family of coronaviruses as SARS and MERS.

The outbreak of SARS in 2002 resulted in 8,098 cases and 774 deaths in 26 countries. Emerging in Saudi Arabia in 2012, MERS brought about 2,494 cases and 858 deaths in 27 countries. Both of them are thought to be bat viruses that got to humans through an intermediate host (civet cat and camel).

Comparing to its “family members”, SARS-CoV-2 has certainly been more effective in infecting humans – the number of reported cases has already passed over 400 000 and rising. The virus was only discovered in January 2020 and much more research is needed to fully understand it. Nevertheless, there are things we already know.

Thanks to its structure, which is essentially a spiky ball, the virus easily attaches to the surface of certain human cells, initiating infection. Unlike most of the respiratory viruses that infect either upper or lower airways, SARS-Cov-2 seems to infect both. Generally, upper-respiratory infections are easily transmitted and usually mild; lower-respiratory infections don’t spread as easily but are more severe. Additionally, the new coronavirus can be stable on surfaces for as long as 24 hours, which along with the fact that humans do not have immunity against it, facilitated such rapid spread around the world.

Exactly when and how the virus has first infected humans remains to be determined. It could have come from bats to humans directly or passed through another animal. Coronaviruses are famous for their ability to exchange part of its genome, the so-called recombination, something that makes them prone to change hosts.

Covid-19 is believed to originate from a wildlife market in Wuhan, China where alive wild animals were sold and butchered on the spot, usually using the same slaughtering tools for different species, which creates favorable conditions for the virus to jump from animals to humans. Such markets are a perfect melting pot for new viruses to emerge and spread. However, there are reports of early cases of Covid-19 in people with no links to the market, suggesting the initial point of infection may have been in a different place.

Photo: Ulet Ifansasti (Stringer) / Getty Images

Biodiversity, biosafety, bioinformatics: A virus risk management strategy

Prompt by the ongoing epidemic, China announced a permanent ban on wildlife trade and consumption. The global community greeted this measure as a major step, though the ban has already been criticized because it allows the trade of animals for fur, medicinal purposes and research. Additionally, China announced a similar ban in 2002 in connection to the SARS outbreak, but enforcement was relaxed after the epidemic was over and the trade rebounded.

Banning trade of wild animals is a straightforward measure to limit exposure to new pathogens. However, it is not the only reason behind the Covid-19 outbreak. Diminishing the emergence of new zoonotic diseases requires holistic strategies that reduce risks across several dimensions and make our societies more resilient to virus outbreaks.

First, all development strategies and activities must prioritize biodiversity and find a way to create jobs, generate incomes and increase wellbeing, without destroying nature.

The emergence of new pathogens tends to happen in places where a dense population has been changing the landscape – agricultural expansion, deforestation, construction, mining – all contribute to the loss of natural habitat. So, the area occupied by human activity is becoming larger, while wild animals are squeezed into shrinking spaces. That is why animals that wouldn’t normally come in contact with humans do so to a higher extent, increasing the risk for exposure and spread of viruses wild animals carry and that we have not experienced before.

For instance, recent research from the Swedish University of Agricultural Sciences (SLU) indicates that large forest fires can increase the spread of rodent-borne diseases in Sweden. However, the risks of emerging zoonotic diseases are especially high in the forested tropical regions experiencing rapid land-use changes and with high wildlife biodiversity.

Second, livestock industry and farmers have to implement adequate biosafety measures

Covid-19 sparked discussion about whether animal-based diets play a role in the emergence and spread of unknown and dangerous viruses. While there is plenty of research pointing that moderate consumption of meat has strong health and climate benefits, to what extent livestock production represents a risk of emergence of zoonosis depends on production management factors and country context.

For instance, small scale organic livestock farming is based on the principle that animals roam close to natural forests. This method is praised for animal wellbeing and lower environmental impact, but it makes contact between domestic animals and wildlife more likely. At the same time, industrial farms would usually keep animals isolated, creating conditions that prevent the spread of diseases from wild animals, however, because the animals are kept so densely to each other, diseases spread fast within the herd. Furthermore, plant-based diets that utilize a lot of commodities like almonds, soy, avocadoes and cocoa aren’t necessarily deforestation-free.

Another key point to consider is that vegan diets may not be the best option for people in low-income countries with high malnutrition. Milk, eggs and meat are highly nutritious, so many people keep animals at home for food and for insurance in times of need. There are also traditional pastoralist communities who live in drylands. For them animal husbandry is not only a source of food security, but also the core of culture.

For these reasons, increasing biosafety standards may offer a more appropriate way to reduce the risk of zoonotic diseases than excluding animal-based foods. Some common measures include keeping animals outside of the house, introducing designated areas for slaughtering and ensuring these facilities and people who work there practice well-executed hygiene and sanitation of all processes and equipment.

Third, funders need to ramp up investment in virology and bioinformatics, while the international community needs to improve cooperation, increase local capacities and raise awareness about these fields of knowledge.

The risk that new viruses can emerge and spread will always be there. But it is possible to minimize the losses by means of fast accurate detection and early response. Mapping the existing viruses in all animals will help us know what is out there and start developing technologies and strategies that can help us prepare and cope with possible outbreaks, pivoting from reactive to a proactive response. Advancing bioinformatics and virology will not only help us develop vaccines, but also anticipate pandemics through monitoring of threats while they are still evolving in animal populations.

Raising general awareness about what viruses are, how they spread and how one can protect from them is also key. Knowledge can conquer panic and prevent the creation and spread of conspiracy theories and fake news.