Smallholder farmers in Kenya know how to meet climate challenges, but lack the means to do it

Published

This article was written and first published by SIANI in collaboration with PhD Ylva Nyberg, Department of Crop Production Ecology, SLU. The ïŹndings and conclusions in this blog post are those of the authors and do not necessarily represent the views of SLU.

A more diversified farming system spread the risks better and has higher delivery of ecosystem services even if it needs more knowledge and labour. Photo: Ylva Nyberg.

Many smallholder farmers in sub-Saharan Africa are caught up in a negative spiral. Often farming on one hectare of land, they struggle to make ends meet and, in most cases, they cannot afford enough farm inputs, which leads to declining soil fertility of their farms, resulting in low yields. Many farmers have to look for casual jobs to get by. Poverty pushes them to reduce the number of meals they eat, so they also lack the energy to farm.

Climate change with its changing rain patterns, droughts and floods doesn’t make the life of smallholder farmers easier. Contrary to the popular belief, recent research by Ylva Nyberg, highlights that smallholder farmers are well aware of the climatic challenges and know how to adapt and cope. However, they would be reluctant to adopt sustainable agricultural practices due to the lack of access to credit, land, knowledge and labour.

Nyberg carried out her field work on smallholder farms across a gradient of landscapes in Kenya, from Kisumu by Lake Victoria to Trans Nzoia in the western highlands. She summarized her findings in her PhD dissertation which she defended at the Department of Crop Production Ecology at the Swedish University of Agricultural Sciences, SLU. 

Initially, Nyberg embarked on her journey to gain a better understanding of how small farms can increase yields without damaging nature. She used a variety of research methods, such as group and individual interviews, tree density measurement, soil sample analysis and randomized control trials. During the group interviews, Nyberg explored whether the farmers had experienced rainfall-related challenges and if they had planned to adapt to changing rainfall patterns. She quickly learnt that smallholders were well aware of climatic changes and also knew many adaptation and coping strategies, though men happened to be better informed than women

Then Nyberg spoke with farmers individually to find out how they applied their knowledge of adaptation measures. The results varied in accordance with access to social capital. Men tended to have higher education, better access to agricultural advisory services and more time for social networking, and they also were able to use more adaptation measures than women, especially those who lack education. Farmers with regular access to agricultural advisory services used more adaptation measures, especially those measures that they perceived most effective.

During these interviews many farmers also mentioned that having trees and livestock makes them less vulnerable, providing insurances or savings. Therefore, Nyberg has also considered these parameters in her work. It appears that higher tree density increased the workload on farms, but the income that came from these farms was higher too. In addition, trees were important to all farmers by providing shade for recreation. High livestock density showed signs of higher soil nitrogen turnover, even though collecting and using the manure can be challenging. Low tree and low livestock density were often an indicator of high dependency on off-farm revenues.

Agroforestry was one of the practices found to positively affect maize yields as well as being perceived effective among farmers. However, agroforestry is also labour-intensive. Photo by Ylva Nyberg

Lastly, Nyberg compared farms that took part in Kenya Agricultural Carbon Project over four years with those farms that weren’t engaged in carbon farming. She found that maize yields were positively related to terracing of fields and to growing more trees on the farm, the so-called agroforestry. Farmers working with the Carbon Project used more sustainable management practices, had higher yields and better food self-sufficiency as well as more savings than farmers who weren’t involved in the project.

However, the farmers who participated in the Carbon Project had higher yields to begin with and the difference in yield between the two groups of farms were similar in the first and the fourth year. Thereby, the increases in yield cannot be explained by the project only, unless the neighbouring farms outside the project had actually learnt methods and started practising them as well.

Smallholders have great potential to improve their production in a sustainable way, but they lack sufficient labour, land, money or knowledge to adopt sustainable agricultural land management practices.

Nyberg suggests that policy should address the farming and food production system as a whole, increasing inclusivity, particularly in regards to women with poor education. Agricultural advisors should also promote packages of simple but effective measures, encourage diversified farming systems where feasible and focus on the limiting factors, such as access to credit, knowledge and labour. This way, farmers will have the means to practice sustainable agriculture. Only then smallholder farmers will be able to build sustainable livelihood, supply ecosystem services and be climate action agents.

Check out Ylva Nybergs PhD thesis here.

COVID-19 and Food Security

Published

Written by: Assem Abouhatab, Sofia Boqvist, Sara GrÀslund, Ylva Hillbur and Rodomiro Ortiz
Swedish University of Agricultural Sciences (SLU)

Farming close to Mbeya, southeastern Tanzanian highlands.
Photo: Rodomiro Ortiz, SLU

Reflections on Sweden’s Global Contribution to Agenda 2030

During a short time span, COVID-19 has spread rapidly across the globe, resulting in hundreds of thousands of deaths. The underlying causes of the pandemic are linked to the virus crossing the species barrier from animals (likely wildlife) to humans, with subsequent spread within the human population. While the links between livestock and human health are well established and increasingly acknowledged, there is great potential in developing the One Health approach further. In 2019, the UN biodiversity panel established that emerging infectious diseases in wildlife, domestic animals, plants or people can be exacerbated by human activities such as land clearing and habitat fragmentation.

The outbreak has so far hit Europe, East Asia and North America the most and there is fear that the infection will spread uncontrolled in Africa with severe consequences for poor peoples’ health and food security. The World Food Program recently alerted the UN Security Council that the pandemic could push another 130 million people into hunger this year. Poor people are particularly vulnerable for infections like COVID-19 as they often live in areas with poor sanitary conditions, have restricted access to health care and lack economic safety nets.

While the outbreak of COVID-19 has led to both a global health emergency and is unfolding a global economic crisis, it could also result in food insecurity, particularly when food supply chains are disrupted. Preliminary reports show that the pandemic has indeed disrupted global agricultural supply chains; slowed down global agricultural trade; and obstructed transportation, logistics and distribution channels as borders have been shut. In this regard, about 16 countries have issued food export restrictions or bans to ensure national stock and avoid food price inflation. The spread of the pandemic has further disrupted many activities along the agri-food supply chains and posed significant challenges to the food systems, especially in low-income countries where employment, livelihoods, food and nutritional outcomes, and many other essential services are derived from agriculture. As an example, the number of people at risk of food security may rise to 50 million  in West Africa – a region in which 35% of the economy depends on agriculture.

The immediate threats posed by COVID-19 to agricultural supply chains include the disruption of rural labor markets, which may impede farming and food processing activities. Some food supply chains in low-income countries are facing challenges related to growers –particularly smallholders– accessing inputs for their farming, being in their fields for planting, cultivating and harvesting their crops or breeding and feeding their livestock, managing animal and plant health in their farming systems, and actively participating in the output markets to sell their produce. In addition, farm labor shortages may result from mobility restrictions, while urban food processing may be put on hold due to delays on getting raw materials. In terms of consumption, the closures of restaurants and reduced visits to grocery and food markets decrease demand for fresh food and livestock products, affecting producers and suppliers. Food demand in low income countries is closely linked to income, and the loss of income-earning opportunities could affect consumption. The International Food Policy Research Institute estimates that the pandemic may cause 140 million (of which 2/3 are from Africa and remaining 1/3  from South Asia) to fall into extreme poverty in 2020.

Grazing livestock, West Pokot, Kenya. Photo: Eva Wredle, SLU

Food supply chains may be further troubled when considering that many nations depend on trading among each other staples, animal feed, fertilisers, machinery or pesticides. Hence, in order to guarantee affordable access to safe food for meeting the demand of their populations, it is crucial that international trade continues. Another global recession may further reduce the demand for rural output and labour. The announced economic stimulus packages by many nations should therefore provide means for stimulating the recovery of the rural economy in low-income countries to build an agriculture that should be increasingly resilient to shocks such as pandemics. In this way, they will also show their commitment to Zero Hunger and meeting the targets of Sustainable Development Goal 2, aiming to warrant that everyone everywhere is able to eat enough good-quality food to ensure a healthy life. Such an objective needs to improve sustainably the agricultural productivity and increase the profits of smallholder farmers by allowing them to fairly access land, technology and both input and output markets.

Sweden has a strong commitment to Agenda 2030 and to supporting low-income countries as demonstrated by its international development cooperation, government strategies and research agendas.  In the current crisis, we must keep the momentum towards the Sustainable Development Goals and move into the post-pandemic era with an ambition to increase resilience of communities and sustainability of the food systems by:

  • Reinforcing international partnerships. International collaboration focusing on exchange of knowledge and ideas and mutual capacity development is crucial for a sustainable development across the globe. International collaboration and national development go hand in hand.
  • Increasing resilience and sustainability of the food systems. Climate change has profound impacts on the food systems. Increasing farmers’ resilience to climate change will reduce their vulnerability also to pandemics and other shocks. As described by the UN climate panel, there are great opportunities for response options that provide co-benefits for climate change mitigation and adaptation as well as food and nutrition security.
  • Implementing One Health approach in practice. In order to fight health issues at the human-animal-environment interface a multidisciplinary and holistic approach is needed. Increasing collaboration between sectors is crucial, with integration of human health, animal health and conservation and sustainable use of ecosystems, to prevent future pandemics and other health threats.
  • Enhancing the understanding of the effects of the pandemic on food security. Pandemics will happen again. So, we need to learn and adapt to be more resilient next time. It is important for all countries, including Sweden, to minimise the impacts of pandemics on domestic food chains and markets, e.g. the potential impact through disruptions to the global agricultural supply chains and agri-food trade.

International research cooperation will boost the productive and resilient capacity of low-income countries’ agriculture, particularly if embracing a holistic, transdisciplinary and enlarged One Health strategy; i.e., integrating human, animal, plant, soil and environmental health following an innovative approach for research in development under a changing climate. The outputs of such an approach will contribute to a fair remaking of the social contract that may emerge after the COVID-19 pandemic. To increase food and nutrition security for all, it is therefore crucial to keep the momentum towards Agenda 2030.


SLU contributes to Agenda 2030 through our mission to develop knowledge and capacity for sustainable management and use of the biological resources. To contribute to food security and Zero Hunger, we are for example currently partnering in Sida’s long-term bilateral research capacity programs through training of researchers in fields of relevance to food security in Bolivia, Cambodia, Ethiopia, Mozambique, Rwanda, Tanzania and Uganda. AgriFoSe2030 is another Sida financed program where SLU jointly with Stockholm Environment Institute, Lund University and the University of Gothenburg supports actors in Africa and Asia to develop capacities to translate food security science into policy for impact. SLU furthermore works with the African Union and the EU Commission to map and capture knowledge from past and ongoing initiatives for food and nutrition security in Africa in the Leap4FNSSA program to improve efforts in the future. Explore more of SLU’s global partnerships and programmes at www.slu.se/slu-global

Flowering plants for the fight against malaria

Published

Each year, more than 200 million people suffer from malaria around the world and every two minutes, a child dies from the disease. Globally, an estimated 3.4 billion people in 92 countries are at risk of being infected with malaria and developing disease. In conjunction to World Malaria Day, marked each year on 25 April, SLU Global highlights the importance of research by asking Professor Rickard Ignell about his ongoing and novel research to fight malaria.

Professor Rickard Ignell photographing one of the plants that are included in the study of potential sources of nectar at the Ifakara Institute, Tanzania. Photo: Sharon Hill

Please tell us about yourself, Rickard.

I am professor in chemical ecology, and have been working on disease vectors, predominantly on mosquitoes that transmit malaria, dengue and other arboviruses, since 2005. My group has a keen interest in understanding the ecology and evolution of olfactory (editor’s note: the sense of smell) communication in disease vectors, and we use a cross-disciplinary approach to assess how behaviours of these insects are shaped by various factors. Our fundamental research has been a spring board for us to identify novel tools that can be used to complement current integrated vector management methods. In relation to e.g., malaria control, we have expanded our work in sub-Saharan Africa over that last few years in order to increase the impact of our results.

You have recently received a large grant from The Swedish Research Council for research about utilisation of flowering plants for the fight against malaria. That sounds very interesting! What is it about?

Malaria mosquitoes, along with most other species of mosquitoes, require sugar and other nutrients for survival and reproduction, and obtain these through e.g., floral nectar. Mosquitoes prefer to feed on different flowers, and locate these using their sense of smell. Ongoing research has shown that we can harness the properties of attractive plants for the development of odour-bait technology to be used against both males and females of a wide range of mosquito species. We have also shown that toxic metabolites in floral nectar can have damaging effects on the development and survival of malaria parasites. Using a forensic approach, we will now expand our understanding of which plants are fed upon by malaria mosquitoes in the wild to assess if mosquitoes carrying malaria parasites change their floral preference in a way to self-medicate.

Why is this research important and what do you hope to achieve?

Malaria prevention and control strategies have resulted in a remarkable reduction of malaria mortality and morbidity throughout most of sub-Saharan Africa over the past two decades. However, over the last five years this impact has stalled, and we are now witnessing an increase in malaria in part of sub-Saharan Africa. Factors contributing to this include both physiological and behavioural resistance among the malaria mosquitoes, which has led to a need to control mosquitoes outside for which there currently are limited tools available. We have in a recent study shown that we can drastically reduce malaria incidence through mass trapping of mosquitoes by using an attractant that targets a broader spectrum of female mosquitoes. The floral attractant, which we now have available, increases this spectrum to include males, and we thereby have a better way of controlling the entire population of mosquitoes at a local scale. While the work we will do on toxic metabolites is still at an early stage, we hope that this research in the long run could provide leads for the development of drugs for the treatment of malaria.

How does this research differ from other research on combating malaria?

Until now the only viable option for controlling malaria has been to target the mosquito vector, partly due to the rapid development of resistance of the malaria parasites. The novelty of our research is that we embrace the natural ecology of the malaria mosquitoes in our efforts to identify novel tools for their control.

Anything you would like to add?

We are grateful for the support from various funding sources, including e.g. the Swedish Research Council (VR), which continues to support us over the years. This long-term funding has allowed us to generate a much-needed understanding of the ecology of malaria mosquitoes, which we now can use and share with our collaborators. There is, however, a need to increase our efforts, which we hope to achieve through increased collaboration both within SLU and other partners, but within academia and industry.

Thank you Rickard and good luck with your research!

Written by Malin Planting, communication officer, SLU Global.

Migrant workers exposed during Covid-19 crisis

Published

Written by Alin Kadfak, SIANI-SLU Global Communicator and Researcher at the Department of Urban and Rural Development at the Swedish University of Agricultural Sciences, SLU. This blog post was originally posted at SIANI website.

Photo: SeaDave/Wikimedia Commons

The ongoing global pandemic may increase job insecurity and ruin rudimentary social welfare structures, amplifying the vulnerability of migrant workers.

I could not see many signs of concern when I was doing my fieldwork in Thailand and Myanmar in February – March 2020. Migrant workers in a Thai border city of Ranong were more concerned about such everyday struggles as ‘When to extend the work permit?’, ‘Where to find work today?’ or ‘How to send kids back to Myanmar when a few Burmese schools were forced to close down?’.

The fear of catching the virus was not a major concern. Due to the nature of temporary and short-term employment, migrant workers are more worried about losing their source of income than about health.

The ongoing pandemic, and the economic slowdown that’s likely to follow, will hit the poor harder than the rich, increasing the already stark inequality. Migrant workers are on the frontline of this crisis. Here is why:

Restricted mobility â€“ Lack of movement may result in unemployment. Many countries are going into lockdown, so workers, the new and the returning, cannot travel to their destinations during the crisis. At the same time, millions of workers are looking forward to celebrating New Year with their family (Thailand, Laos, Cambodia and Myanmar share the same new year celebration mid-April every year). Like everybody else, migrant workers are advised against traveling home. If they do, they have to self-quarantine for 14 days upon their return. Two weeks of self-isolation is un-achievable when you and your family depend on daily wages and receive no compensation for the sick days.

Lack of social support â€“ Social support and networks are crucial determinants of resilience. The importance of social capital is especially high in the time of crisis. Social exclusion is common to migrant workers, they rarely have social support networks in their host-communities, so accessing help in times of need is tough. For example, many migrant workers don’t speak Thai and don’t interact with their host communities on a daily basis, so they may stay behind on the up-to-date information about the COVID-19 spread and be unaware of the suggested precaution measures. What is more, even when migrant workers manage to build social relations in their host community, the crisis may disrupt collective memory production and weaken the capacity of newly formed social networks, meaning migrants members may be the first to get a cold shoulder.

Limited welfare â€“ In Thailand, migrant workers have only recently started to receive a minimum wage, social security and health insurance. However, as the resources for testing and treatment of the virus are limited, migrant workers won’t be the first to access health services. At the same time, because of the short-term employment contracts and legal status in the host country, migrant workers will be the first to face layoffs too.

Living in limbo â€“ Informal border crossing and illegal status provide migrant workers with an opportunity to earn a living without having to pay the fees for recruitment agencies or visas. However, living in the legally grey area may push workers into extremely vulnerable situations when crossing borders –  not only won’t they be covered by healthcare in origin and host countries, but also risk facing charges due to their illegal status. For example, it is still impossible to hold a record of how many migrant workers have lost their lives in Thailand after the tsunami of 2004.

What is social distancing? â€“ Nearly 4 million Burmese, 2 million Cambodian and million Laotian labourers are working in Thai factories, construction sites, farms and fishing boats. These physical jobs require close contact. Minimum wages mean that migrant workers usually live in simple congested housing and in densely populated areas. The concepts of ‘social distancing’ or ‘working from home’ are far away from their everyday reality.

The COVID-19 crisis has not only accelerated the existing problems but also created many catch-22 situations for migrant workers in Southeast Asia and around the world.

These issues are complex and don’t have an easy answer, but one can start from granting migrants a legal status, allowing their families to be documented too. The implementations of the legalisation process should also reflect the reality of everyday life and the movement of migrants.

For instance, due to the nature of short-term employment, many migrant workers live by the border and move between Myanmar and Thailand every three weeks for 40 years and don’t get to live with their family. Besides, immigration regulations keep changing every year, which complicates any long-term planning, like education for their kids. And without basic education from either side of the border, the children of migrant workers have no means for upward mobility, so they follow in the footsteps of their parents, taking on low-paid unskilled jobs.

Additionally, the length of stay in a country for migrants is often attached to their employment status, which creates unbalanced power dynamics, favouring employers. However, one can promote labour rights by permitting migrant workers to unionize. This could allow for some forms of representation and negotiation between workers and employers. In the long term, improving legal status and worker representation will result in better welfare and improved living conditions.


The spread of African swine fever is a serious threat to Asian pig farmers

Published

By: Gunilla Ström Hallenberg, SLU Researcher at the Department of Clinical Sciences;
Division of Reproduction 

The current outbreak of African swine fever in several Asian countries is causing severe impacts on the pig industry. Since the disease has a very high mortality rate of up to 100%, it is associated with substantial losses for pig farmers and may lead to trade restrictions and ban on exports of pigs and pork from affected countries.

Destruction of dead pigs during an outbreak of African swine fever in a Cambodian village. Photo: Kristina Osbjer, FAO.

It was in August 2018 that the first outbreak was reported in China. Previously, African swine fever had only occurred in Africa, although with recent spread to Russia and parts of Europe. The emergence of the disease in China is highly worrisome, given that the country harbours around 50% of the world pig population (around 430 million pigs). Since the first reported outbreak, the disease has spread throughout eastern China, with a recent outbreak in the western province of Xinjiang. To date, it has been estimated that around one million pigs have died or been culled as a results of African swine fever in the country. 

As a consequence of the ongoing outbreaks in China, neighbouring countries have put in a lot of efforts in order to stop the disease from spreading into their countries. Despite these efforts, African swine fever was reported in Mongolia in January 2019. In Mongolia, the disease has so far led to that more than 10% of the country’s (although quite small) pig population have died or been culled.

On 19 February 2019, the first outbreak was reported in Vietnam, a country with more than 10 million pigs, of which the majority are still raised by smallholders. Initially, outbreaks were concentrated to the northern regions around Hanoi but the disease was recently reported in central Vietnam as well.

The most recent report on African swine fever is from Cambodia, where disease symptoms were first noticed on 22 March 2019 on a small-scale farm in Ratanakiri province, bordering Vietnam. The disease is believed to have been spread through contaminated food products imported from Vietnam. Since then, more outbreaks have been reported in neighbouring districts in Cambodia.

Map illustrating the outbreaks of African swine fever in Asian countries, from August 2018 to May 9, 2019. Source: FAO, “ASF situation in Asia update”.

The disease

African swine fever is caused by a virus of the Asfarviridae family. It affects both domestic pigs and the wild boar population. The disease is usually deadly, especially among domestic pigs. Wild boars appear to be less severely affected by the disease but may still carry the virus and infect other pigs. Infected pigs typically show symptoms like fever, loss of appetite, lack of energy and internal bleeding. Reddening of the ears and flanks is also a common symptom. Pigs infected with the virus usually die within ten days, sometimes before even showing any symptoms. The African swine fever virus does not cause disease in humans.

Sampling for African swine fever detection in a Cambodian village. Photo: Kristina Osbjer, FAO.

To date there are no vaccine available against African swine fever, which makes controlling the disease challenging. Early detection and good biosecurity are the main tools used to control the spread of the virus. As biosecurity measures are often poorer in backyard or non-commercial farms, those farms are often the ones first affected by the disease. With the exception of China, all outbreaks in Asia have so far occurred in backyard pig farms.

Transmission and spread

The African swine fever virus affects both domestic pigs and wild boars. Healthy pigs usually become infected through direct contact with infected animals, both domestic and wild boar, or if they are fed meat products from infected animals, for example from kitchen waste or through swill feeding. The virus is very heat resistant which means that infected products must be properly heated to eliminate the virus. According to FAO, the majority of the first 21 outbreaks of the disease in China were related to swill feeding, leading to updated feed restrictions and the banning of swill feeding to pigs.

Besides being heat resistant, the virus may also survive in cold or frozen meat products for several months. Importing meat products from affected countries may therefore involve a risk of introducing the virus to other countries. The virus may also be spread between farms and animals through contaminated material, such as clothing, vehicles and other equipment. This appears to be an important route in the transmission and spread of the virus in China. Thorough cleaning of any material or clothing in contact with infected animals or meat products is therefore of great importance. However, such practices might not be properly implemented in lower-income countries and on backyard farms, which facilitates the spread of the disease.

Contaminated meat products may be a source of transmission of the African swine fever virus. Photo: Gunilla Ström Hallenberg, SLU.

Impacts on the Asian pig production

The spread of African swine fever in Asia will seriously affect the pig production in the region. Besides the obvious effects the disease will have on animal health and welfare, the high mortality and the culling of pigs on positive farms will lead to substantial economic losses for the farmers. Since it is to a large extent small-scale backyard farms that have been affected, this will likely have extensive impact on the income and livelihoods of the farmers and their families. Consequently, these farmers will likely run out of business and there are projections that there will be a shift towards more large-scale pig farms that can afford better biosecurity measures.

The pig industry in affected countries will also suffer the consequences, not only through direct economic losses from deceased pigs, but also through stricter legislation on trade and export of pigs and pork. For example, the pig industry in Vietnam is of great economic importance for the country’s economy and depends to a large extent on the export of products to China and other countries in the region. However, not all changes will be bad. For example, the prospective ban on long-distance transport of live pigs, replaced by refrigerated transportation of pork, will be a step towards better animal welfare. Also, the necessary improvements in biosecurity will likely lead to reduced incidence of diseases and better animal health and productivity.

It is not only the pig industry that is affected by the spread of African swine fever. The decreased supply and availability of pork may lead to increased prices on those products, thereby affecting consumers and retailers. There have been some reports on increased prices on both the European and U.S. markets as well, resulting from the increased demand for pork in China.

Containment of African swine fever might be difficult, especially on small-scale backyard farms with low biosecurity. Photo: Gunilla Ström Hallenberg, SLU.

Containing African swine fever in Asia might be an impossible task, given the high density of pig farms in many parts of the region and the high proportion of small-scale backyard farms with low biosecurity. Despite this, governmental authorities and different organisations are working hard to control and prevent the disease from spreading further. If they will be successful remains to be seen. However, one can definitely state that it has been a tough start for the Year of the Pig in Asia.

Read more about African swine fever and a SLU research project in Uganda