The European Union’s hunger for soybean

In a recent paper published in Nature Food we show that halted soybean feed imports into the EU would favour ruminant animals such as cows and sheep over pigs and poultry. We also show that total production of animal-source foods in the EU would have to reduce if animal feed production is not to encroach on land currently used to produce food. Increased uptake of plant foods in EU diets is required maintain supply of nutrients.

The fires that raged in the Amazon during the 2019 fire season was unprecedented in number since records began in 2013. Although the drivers are numerous a paper in Global Change Biology has attributed the increase in fire count mainly to increased deforestation rates. When forests are cleared the vegetation is left to dry before it is burned off to make way for agriculture.

Agricultural expansion where natural vegetation is cleared and replaced with fields and pastures is one of the major threats to biodiversity and releases large quantities of greenhouse gases into the atmosphere. One of the recognised drivers of agricultural expansions into rainforests and other biomes in South America is demand for soybeans. The majority of soybeans produced in the region are destined for export markets. While domestic legal frameworks are important for forest protection, international trade has been shown to be an important driver of tropical deforestation and macroeconomic factors can often outweigh domestic regulations. Demand-side measures that reduce demand for soybean are therefore important to avoid further loss of forests.

Most of the soybean produced globally is “crushed” to separate the vegetable oil from the protein-rich meal. Each kg of soybean generates around 0.2 kg vegetable oil and 0.8 kg protein meal. Most of the revenue from the soybean crush is generated by selling the protein meal which is almost exclusively used to feed animals. This means that it is increased use of soybean meal, and ultimately demand for animal products, that primarily drives up soybean demand which leads to clearing of new areas in order to increase production.

Out of the total amount of soybean (beans, meal and oil) exported from South America around one-fifth is imported into the EU, where the vast majority is used to feed animals producing meat, milk and eggs. For example around 0.8 kg soybean is used to produce the average kg of EU pork, much more than needed for a kg of soy meat or tofu. If rough feeds (e.g. grass and silages) are excluded almost one-third of all protein fed to EU livestock comes from imported soybean. Demand for animal-source food within the EU thereby drives global soybean demand and tropical deforestation in South America.

Soybean is in itself an excellent crop with among the highest yields of protein per hectare, and being a legume, it fixates nitrogen from the air which reduces the need to apply nitrogen in the form of mineral fertilizers. Soybean is also one of few crops that is on par with animal-source foods when it comes to amino acid profile. The huge demand from the world’s livestock industry for cheap soybean does however make it hard to implement sustainable production.

When fed to animals, the majority of nutrients and energy present in the soybean are lost as heat or manure and only a small fraction is in the end retained in meat, milk and eggs that we eat. Redirecting the use of soybean from feed to eating it directly could therefore reduce the demand considerably. This would reduce pressure to deforest new areas and may also make it easier to implement more sustainable soybean production practices.

In a recent paper published in Nature Food we assess how dependant the EU livestock sector is on soybean imports by estimating how much meat, milk and eggs that would be possible to produce without soybean imports, given that use of EU cropland for animal feed production does not increase, which is important to avoid pushing production of food crops outside EU borders with potential negative environmental effects. We found that, depending on scenario for how to use EU cropland, 18-25% reduced animal-source food production in terms of edible fat and protein would be needed to completely eliminate soybean feed imports. Mainly it was the production of pork and chicken that was reduced, while beef, milk and eggs was less affected in the scenarios. To compensate this loss of nutrition to EU diets only between 17 and 22% of soybean that is currently imported to feed livestock would be needed to produce soy meat, tofu or other products for direct human consumption, thus considerably reducing the EU’s demand for land in deforestation-prone regions. Alternatively some land currently used to produce feed in the EU could be used to produce plant-source foods (resulting in the strongest reduction of animal-source foods presented above). In that case it would be possible to maintain supply of fat and protein to EU diets even without soybean imports.

The potentials for reduced cropland demand in South America were found to be large, but results also showed a risk of increasing cropland demand in South-East Asia, which is also a region where large scale deforestation occurs. Reduced use of soybean meal for animal feed results in less soybean oil being produced and if global demand for vegetable oils remain unchanged, this oil would need to be replaced by other vegetable oils. The most likely alternative today is palm oil. In absolute terms, the increased demand for cropland in South-East Asia was small compared to reduced demand in South America, but it is nevertheless an important potential trade-off that need to be considered. In one of the scenarios we explored the potential to increase rapeseed oil production within the EU to avoid this trade-off. Such a scenario would avoid increased palm oil demand, but instead rely on continued soybean imports to compensate for reduced consumption of meat. Which scenario is preferable will depend on how future global demand for different agricultural products develop. If for example transition from fossil fuels is achieved through the use of vegetable oil fuels a scenario with increased vegetable oil production in the EU is likely a good candidate.

In summary, the results from the new study show that there is a lot to gain by redirecting feeds of high food value, such as soybean, towards direct human consumption. To achieve these benefits without risking burden shifting it is however crucial that policies are developed with a holistic food systems approach and target soybean imports, dietary patterns, and livestock and crop production in conjunction.

Karlsson, J.O., Parodi, A., van Zanten, H.H.E., Hansson, P-A., Röös, E. (2020). Halting European Union soybean feed imports favours ruminants over pigs and poultry. Nature Food. https://doi.org/10.1038/s43016-020-00203-7

Soybean use for plant-based products shown in the figure was calculated based on data from the following sources:

Karlsson Potter, H., Lundmark, L. & Röös, E. (2020). Environmental impact of plant-based foods – data collection for the development of a consumer guide for plant based foods. Swedish University of Agricultural Sciences, NL Faculty/ Department of Energy and Technology. https://pub.epsilon.slu.se/17699/1/Report112.pdf

Ercin, A. E., Aldaya, M. M., & Hoekstra, A. Y. (2012). The water footprint of soy milk and soy burger and equivalent animal products. Ecological Indicators, 18, 392-402. https://doi.org/10.1016/j.ecolind.2011.12.009

Mejia, A., Harwatt, H., Jaceldo-Siegl, K., Sranacharoenpong, K., Soret, S., & Sabaté, J. (2018). Greenhouse Gas Emissions Generated by Tofu Production: A Case Study. Journal of Hunger & Environmental Nutrition, 13(1), 131-142. https://doi.org/10.1080/19320248.2017.1315323

Cai, T. D., Chang, K. C., Shih, M. C., Hou, H. J., & Ji, M. (1997). Comparison of bench and production scale methods for making soymilk and tofu from 13 soybean varieties. Food Research International, 30(9), 659-668. https://doi.org/10.1016/S0963-9969(98)00032-5

Ecoinvent v3.6 – Products: Tofu production (GLO) and Soybean beverage production (GLO)

New paper on the methodology behind the WWF-vegoguide

How can the environmental impact of plant based foods be evaluated and communicated to consumers?

In a new paper published in the Journal of Cleaner Production, Hanna Potter Karlsson and Elin Röös describe the methodology behind the WWF-vegoguide presented in another blogpost. The guide was developed in cooperation between the researchers and WWF in a process described in the Fig. 1 below. WWF was the project owner and were responsible for the final design decisions regarding aspects such as which products to include, target audience for the guide, evaluation criteria and thresholds. The researchers were responsible for collecting footprint data, test the evaluation criteria, and provided feedback on the design to WWF. Views on the guide from external stakeholders like consumer and trade organizations were consulted in workshops.

Fig. 1
Fig.1. Process of developing the Vego-guide.
From Karlsson Potter and Röös (2020). J of Clean Prod.

The environmental impact categories to include in the evaluation of the foods were selected from the planetary boundaries framework (Steffen et al., 2015) and the mid-point categories of ReCiPe (Huijbregts et al., 2016) based on a set of criteria including their relevance for plant-based products, importance for guiding consumers, availability of scientifically accepted evaluation methods and data availability. Four indicators were finaly chosen: climate impact, biodiversity impact, water and pesticide use. Thresholds for rating the different product as green star, green, yellow and orange were designed to be aliged with the WWF Meat guide and to relate to the absolute food system boundaries as presented in the EAT-Lancet report (Willett et al. 2019). All products were compared on a per kg basis despite their different functions and nutrient content, which instead were considered by applying different thresholds for food groups, e.g. the protein group was allowed a larger share of emission space as these are more demanding to produce and more valuable in diets than carbohydrates.  

Read the full paper here: https://www.sciencedirect.com/science/article/pii/S095965262034765X

“Less but better meat” – what does that mean?

Meat consumption in the Western world has to decrease and meat production practices have to improve. Eating “less but better meat” is a strategy put forward by a number of institutions and organizations as a strategy for increasing the sustainability of diets in high-income settings. But how much is “less” and what is “better”?

In a newly published comment in the Nature Food journal, Elin Röös together with researchers from the Stockholm Resilience Center (SRC) call for greater clarity on these concepts as misuse could steer in an suboptimal direction.

The estimation of “less meat” could be guided by positive and negative health effect of eating meat as well as the amounts of different meats that could fit within climate boundaries or be produced from biomass not suited for human consumption. A first analysis shows that “less meat” would mean a reduction in meat consumption by at least 50% in the Western world regardless of perspective.

As for “better meat” a wide range of issues need to be considered (see figure below). A focus on just one or a few of these can lead to very varying conclusions of what constitutes better meat and risks overlooking important trade-offs. The authors conclude: “Scientific characterization of ‘less but better’ is crucial for enabling more informed discussionon value-laden decisions and to build consensus on the meaning of the concept, especially as it gains traction with civil society organizations and policy makers.

The study:

Sahlin, K.R., Röös, E., Gordon, L. 2020. ‘Less but better’ meat is a sustainability message in need of clarity. Nature Food 1, 520–522 (2020). https://www.nature.com/articles/s43016-020-00140-5

Research in this area continues in a project called “Less but better meat” – a joint project between SLU and the SRC.

Nu är WWFs vegoguide ute!

Världsnaturfondern (WWF) Sverige har nu kompletterat sin Fiskguide och Köttguide med Vegoguiden – en guide för att hjälpa konsumenter välja mer hållbart även bland vegoprodukterna. Gruppens Hanna Potter Karlsson och Elin Röös har varit med och tagit fram bakgrundsdata och diskuterat metodutvecklingen med WWF.

De flesta vegetabilier får grönt ljus inklusive grova grönsaker och baljväxter såsom ätror och , rotfrukter och potatis. Se upp dock med nötter, avokado och kokos!

Är det möjligt att förutsäga hur många elever som ska äta lunch?

Det uppskattas av livsmedelsverket att ungefär hälften av alla luncher som serveras i Sverige görs inom ramen för offentliga måltider. Skolan utgör en stor andel av dessa luncher, vilket kommer sig av en lagstiftad rättighet som möjliggör för elever att kostnadsfritt få ett mål mat varje skoldag.

Foto: Härnösand kommun

I och med att det är en rättighet att få lunch är det en utmaning för köken att försöka balansera hur mycket som ska lagas, då inte alla elever (av olika anledningar) dyker upp och överskottet kastas. I artikeln “Potential for using guest attendance forecasting in Swedish public catering to reduce overcatering” undersöktes det vilken potential olika slags metoder för att göra prognos över närvaro kan hjälpa köken i att bättre planera tillgång och efterfrågan och på så sätt indirekt minska matsvinnet. Nästa steg är att testa prognosverktygen i samband med olika matsvinnsmätningar för att se om prognoserna ger önskad effekt.

The article has been published open access in the journal Sustainable Production and Consumption.
Malefors, C.; Strid, I.; Hansson, P-A; Eriksson, M. Potential for using guest attendance forecasting in Swedish public catering to reduce overcatering. Sustainable Production and Consumption https://doi.org/10.1016/j.spc.2020.08.008

Links between Food Waste and Resilience

We explored the links between food waste and food system resilience in a recently published paper in Ecosystem Services Journal.

Much food is wasted because the actors in supply chains seek to improve their own resilience – so they overplant, over-order or overbuy food. This leads to “unnecessary” emissions & resource use, undermining the long-term resilience of the system as a whole.

But many synergistic actions are possible that both reduce waste and improve resilience. The more resilient actors are, the less they need to over-buy and over-produce.

In the paper we created a ‘system map’ and a long-list of food waste reduction interventions. We then assessed each intervention on it positive or negative effects on different aspects of resilience, such as redundancy, flexibility and connectivity.

Through this process we identified synergistic interventions, notably improved storage, improved food preparation to increase shelf-life, increased use of long-life products, equal sharing of risk along the supply chain and improved connectivity and gave policy recommendations on how to promote to improve both short and long-term food-system resilience through reduced food waste.

The paper is thus a combination of academic research at SLU and experiences of myself and colleagues working on food waste as practitioners at WRAP.

The article has been published open access in Ecosystem Services:
Bajželj, B., Quested, T.E., Röös, E., Swannell, R.P.J., 2020. The Role of Reducing Food Waste for Resilient Food Systems. Ecosyst. Serv. https://doi.org/10.1016/j.ecoser.2020.101140

Ny kortkurs om matens klimatpåverkan från Uppsala kommun

Lär med om matens klimatpåverkan i kortkurs från Uppsala kommun och med medverkande forskare Elin Röös.

https://uppsala-matklimat.se

Uppsala kommun har utvecklat en ny webbkurs om hur man kan göra mer klimartsmarta val vid planering och lagning av mat. Forskare Elin Röös som tillhör Food Systems gruppen deltar i kursen och berättar hur klimatpåverkan från matproduktion uppstår. Kursen syftar till att ge deltagarna ökad kunskap om hur maten vi äter påverkar klimatet, men också att ge konkreta verktyg att använda sig av både i arbetslivet och i privatlivet. Kursen ägs av Uppsala kommun och medfinansieras av statliga Klimatklivet. Kursen ingår i projektet Klimatprofilering av restauranger. Projektet syftar dels till att minska utsläpp av växthusgaser från mat som serveras på restauranger i Uppsala, men också till att göra gäster, personal och privatpersoner mer medvetna om matens klimatpåverkan.

Kursen är nominerad till det prestigefyllda Publishingpriset i kategorin Utbildnings-/Instruktionssajter.

Överskottsmat – till vilken nytta?

Att ta hand om överskottsmat från butiker och livsmedelsindustrin och donera överskottet till behövande är inte något nytt fenomen globalt, men att göra detta för att minska matsvinnet är tämligen nytt. Som ett resultat av detta så har det på senare tid kommit en rad aktörer som på olika sätt försöker hitta vägar för att ta hand om överskottsmaten till olika kundgrupper via olika distributionssätt. Frågan som kan ställas är vilken nytta som den levererade överskottsmaten ger och för vem? I den nya artikeln “Sustainability Assessment of Food Redistribution Initiatives in Sweden” undersöker vi en rad olika distributionssätt för överskottsmat och vilka sociala, miljömässiga och ekonomiska nyttor dessa skapar. Resultaten visar att använda sig av matkassar till socialt utsatta grupper genererar den största vinsten i termer av att minimera växthusgasutsläpp. Att använda sig av överskottsmat för att producera nya produkter visade sig skapa högst social nytta då det undersökta konceptet skapade flest arbetstillfällen (arbetade timmar per kg distribuerad mat). Problemet som samtliga iniativ har är att få ekonomin att gå ihop, då endast två av de undersökta fallen gick med vinst och inte var direkt beroende av extern finansiering.

Photograph by UNT

Food banks that redistribute surplus food from retailers and the food industry to people in need are not a new concept globally, but their connection to food waste prevention is new. As a result, new types of food redistribution units are emerging and diversifying to find new target groups and distribution methods. The aim of a new study “Sustainability Assessment of Food Redistribution Initiatives in Sweden” was to identify and study surplus food redistribution units in Sweden, and then to assess the impact on several sustainability indicators for selected redistribution units, in order to increase knowledge on the types of values these redistribution concepts generate. The methods used for analyzing the scenarios were Environmental Life Cycle Assessment, Life Cycle Costing and Social Life Cycle Assessment. The results showed that providing food bags to socially exposed people generated the largest reduction of greenhouse gas emissions per kg of redistributed food. Reprocessing surplus food to a high-quality end-product was attributed to a high social value, due to job creation effects in the high number of working hours required per kg of redistributed food. With regard to economic impacts, all but two scenarios studied had monthly financial losses and therefore needed other sources of financial support.

The article has been published open access in MDPI resources:
Bergström, P.; Malefors, C.; Strid, I.; Hanssen, O.J.; Eriksson, M. Sustainability Assessment of Food Redistribution Initiatives in Sweden. Resources 2020, 9, 27. doi.org/10.3390/resources9030027

Reflective crops contribute to climate change mitigation

Albedo change can make an important contribution to the climate impact of cropping systems. Albedo is the share of solar radiation reflected back from the ground. It ranges between 5 and 30% for bare and vegetated agricultural land, and can reach up to 90% due to snow cover. The more reflective a surface, the higher its albedo and the greater the potential for radiative cooling and eventually temperature change.

Photograph by Sergio Lorenc

Albedo has increased globally due to agricultural expansion, converting forests to more reflective grass- and croplands. However, deforestation is associated with losses of crucial ecosystem functions including carbon storage and local surface cooling by evapotranspiration. Managing agricultural land to achieve higher reflectivity has the potential to mitigate local heat waves and global warming. Strategies to increase the albedo of croplands include selection of reflective species or varieties, introduction of cover crops, intercropping, residue retention, and delayed or no ploughing.

In a recently published article, we studied how cultivating abandoned land with short-rotation willow affects albedo and evaluated its potential as a climate change mitigation measure. We found that albedo increased from 16.5 to 21.5% on average when fallow land was cultivated with willow, based on three years of field-measured data. These data were subsequently combined with a time-dependent life cycle assessment (LCA) model of bioenergy produced from willow. Here, we included emissions from the production of inputs, field operations, soil, transport and energy conversion.

Simulating processes and emission along the life cycle and impacts on climate over time allowed us to compare the effect of albedo change (cooling) to that of greenhouse gas emissions (warming) and carbon sequestration in biomass and soil (cooling). In sum, the bioenergy system had a net cooling effect because albedo change and carbon sequestration outweighed emissions from the supply chain and soil. Our results over time showcase the different nature of albedo and long-lived greenhouse gases as climate forcers. Albedo change needs to be sustained for years in order to offset the temperature response to a one-off greenhouse gas emission.

The article has been published open access in GCB Bioenergy:
Sieber, P., Ericsson, N., Hammar, T., & Hansson, P.-A. Including albedo in time-dependent LCA of bioenergy. GCB Bioenergy, n/a(n/a). doi:10.1111/gcbb.12682

100 000 ton per year instead of 30 000 – updated data about food waste from Swedish retail stores

The elefant in the room in this new report http://www.naturvardsverket.se/Om-Naturvardsverket/Publikationer/ISBN/8800/978-91-620-8857-6/, was the new data on retail waste – 100000 tons instead of 30000 tons -, which now is based on figures reported directly by the retail chains via the voluntary agreement instead of statistics based on a few stores combined with the number of employees. Expressen, a Swedish tabloid newpaper, made an interview with me and choosed to put focus on how the stores try to hide the food waste data, by not including rejected fruit and vegetables and returned unsold bread and dairy products. From my perspective, this actual behaviour is true, but the incentive is probably not to hide data from the public, but to shuffle the waste to other actors for economical reasons. I also think the newpaper “scope” about this could have been that the Swedish environmental protection agency previously used a method that only catched a third of the actual waste, besides that the now published “actual” waste does not include everything arising at retail level. /Ingrid Strid, food waste researcher at SLU

https://www.expressen.se/nyheter/klimat/sa-doljs-matsvinnet-genom-livsmedelsjattarnas-kryphal/

Oranges in nets are often wasted when one fruit gets bad.