Wild food as a safety net: Food and nutrition security during the Covid-19 pandemic.

Published

This blogpost is written by Divya Gupta, Indian School of Business, Hyderabad, India; Suchita Shrestha, Southasia Institute of Advanced Studies, Kathmandu, Nepal and Harry Fischer, SLU. This article was first published by SIANI.

Andheri Village in Himachal Pradesh, India. Source: Divya Gupta

Edible wild foods have been an important part of the diet for rural populations around the world, primarily in developing countries. They are also an important safety net and contribute to resilience by enabling people to cope with food insecurity in times of rural distress. This has become particularly apparent in the context of the COVID-19 pandemic.

We have conducted research on food security during the COVID-19 pandemic in the mid-Himalayan region of rural India and Nepal, where nationwide lockdowns were imposed starting last the week of March and continued for several months. The lockdown led to movement of all kinds being sharply constrained, which disrupted the food supply chain and created uncertainty in accessibility, availability and affordability of food. Working with local research assistants, we have been able to continue our data collection and conduct interviews (while following strict government guidelines) thereby providing an in-depth understanding of how the effects of the lockdown unfolded in the areas.

Wild mushrooms harvested by a household in Himachal Pradesh, India. Source: Subodh Kumar (Research Assistant)

Over the past few decades, a large proportion of the populations in our study sites have transitioned to cultivating cash crops. While these trends may have increased household incomes overall, they have led to reduced production of food for household’s own consumption and increased dependence on markets for both food and income. The lockdown constrained farmers’ ability to sell their harvest due to transport restrictions to the market, leaving many of them to face huge financial losses. This compromised the purchasing power of the people and increased their reliance on wild foods such as leaves, seeds, nuts, honey, fruits, mushrooms that they can collect from their communal resources, including forests, grasslands, and water bodies.

Rasnalu Village in Ramechhap, Nepal. Source: Divya Gupta

Edible wild foods have been an important coping strategy for households to deal with food shortages following the lockdown, especially for landless households and wageworkers who depend on off-farm employment. The lockdown has had a profound effect on the employment and income of such households. There were families that could not afford adequate food and reported consuming less food than before.

Rasnalu Village in Ramechhap, Nepal. Source: Divya Gupta

A woman from a landless household with eight family members in a remote village in Nepal told us, “my husband is a construction worker, and he lost his job immediately after the lockdown was imposed. This constrained our ability to buy food to adequately feed our family. I was constantly stressed out about this and often resorted to foraging edible wild foods that I was able to find in our forests”. Another smallholder farmer in India shared, “we did not have enough food left in our reserve when the lockdown was imposed, unfortunately it was also a bad season for our crops as we lost most of our harvest to pest infestation. The wild foods that we were able to gather from our forest was a huge respite and we were extremely grateful for that”.  In addition, wild foods were also a convenient option as some households preferred foraging as opposed to spending money buying vegetables from the market, as an interviewee from a small-landholding household from our site in Rasnalu Village in Nepal shared.

“We occasionally collect vegetables growing in the wild. However, during the lockdown owing to the shortage in supply of fresh vegetables and a consequent rise in their price, we relied more on foraging”.

Wild foods in our sites were also perceived to be safe from contamination. Although not based on scientific fact, many households feared consuming produce bought from the market. “We were scared to buy vegetables from the market because we feared they might carry the infection, so we substituted vegetables with wild foods that we would find in our forests”, said a farmer in our study site in India. He further added:

“Once when I had got vegetables from the market, my mother panicked and immediately threw them away. Market bought vegetables were strictly banned in our household”.

In addition, cooking wild foods was also perceived as a way of continuing traditional recipes. For example, in our sites in Nepal, households procured greens such as stinging nettle, fiddlehead fern, and others that are used as an alternate to market-bought/ cultivated vegetables. “These foods are a part of our traditional recipes that we have been cooking for generations”, shared a female respondent.

Fiddlehead ferns. Source: Rakshya Timalsina (Research Assistant)

It is important to note that under normal circumstances, a lot of the households in our study areas use diverse food sources to fulfill the dietary needs of their family, including farms/kitchen gardens, markets, and communal land and water resources. We observed that at the time of the lockdown, wild foods were particularly important for households that lacked adequate income and/or did not have the option of a kitchen garden. Thus, wild foods have been an important component of the food basket for our sample population during the pandemic

Observation from our research highlights the importance of wild foods as carriers of important cultural values and also their roles in helping households cope with food insecurity in the context of shocks and uncertainty, such as the COVID-19 pandemic. Often overlooked as a resilience strategy, wild foods are a vital resource that demands more attention in ensuring mechanisms for managing and safeguarding habitats for their long-term sustenance.

This research was supported by the Swedish Research Council (VetenskapsrÄdet) research project 2018-05875 and a FORMAS Urgent grant 2020-02781.

What the pandemic taught us about the future of academic exchange

Published

This blogpost is written by SLU students Emma Bergeling, Hanna Smidvik, Emil Planting Mollaoglu and Felicia Olsson. It was first published by SIANI.

As a result of the corona pandemic, the embedded practices of international travel in academia drastically changed. It suddenly became customary to replace business trips with digital alternatives whenever possible. Four students at SLU decided to study the implications. The results show a great untapped potential to reduce emissions from academic travel by conducting a larger share of academic activities digitally – without compromising the quality of research. 

In the turmoil that arose due to the travel restrictions put in place in March 2020, academics suddenly had to find solutions to continue their work in ways that did not include longer business trips. As students actively involved in discussions on universities’ greenhouse gas (GHG) emissions, we have for long been discussing the question of how academic business trips can be replaced by digital alternatives while maintaining the quality of work and research. 2020 presented an unexpected window of opportunity to seek an answer to that question and to gather academics’ experiences of the new reality without travels.

Academia in a burning climate crisis

The topic of GHG emissions from academia in general and academics’ air travel in particular has over the past decade been the focus of a growing number of publications in scientific journals and in mainstream media. This should be understood against a backdrop of factors such as i) the climate crisis itself,  ii) the notion of aviation as one of the fastest-growing sources of GHG emissions – characterised by a slow technological development unlikely to compensate for the estimated growth in demand, and iii) the recognition of academic researchers as among the highest emitters when it comes to international air travel, but also as potential leaders in a transition to a society within the planetary boundaries, if combining advocacy with changes in their own emission habits. This debate has resulted in various commitments, initiatives and responsibilities for higher education institutions (HEIs) around the world. With air travel being one of universities’ largest sources of GHG emissions, the need to critically scrutinise the norms and practices of academic travel is apparent. 

Prior to the pandemic, one could mainly speculate about the consequences of a drastic and large-scale reduction of travel in academia. University employees’ recently gained experiences of an increased use of digital solutions replacing longer business trips are therefore valuable in the search for new norms and practices of academic travel. In our study, we wanted to collect these experiences before they fell into oblivion. Through 25 semi-structured interviews and a survey with approximately 220 respondents, we sought to answer how employees at SLU experienced the cancellation of business trips and increased use of digital solutions. What trips worked well or not so well to replace? How was the quality of various academic activities (seminars, thesis defences, conferences, project meetings etc.) affected by being held digitally? 

Digital solutions replacing academic travel – what have we learnt? 

Our study shows that there is a great, untapped potential to reduce emissions from academic travel without compromising the general quality of the research and work. By adopting a more thought-through mix of digital and physical meetings, where a larger share of activities are conducted digitally, academia can reduce GHG emissions while keeping the quality as well as opening up for greater accessibility and participation.

A majority of the respondents were surprised by how well it had worked to replace longer business trips with digital alternatives, surprisingly well or beyond expectation were common formulations. An overwhelming majority (83%) of the survey respondents reported that their work in general had been mainly positively affected, equal parts positively and negatively affected, or not affected at all by the travel restrictions. 

Effects on work in general.

The academic activities that were experienced as most difficult to perform digitally were certain types of fieldwork and data collection, as well as activities that require spontaneous discussions and networking. We also found that meetings had become more efficient, but often at the expense of social interactions. On the other hand, well-structured meetings with a clear agenda between people that had previously met in person, as well as activities such as administrative meetings, project meetings and seminars, were perceived as most suited to perform digitally. These experiences were also mirrored in the survey respondents’ answers to what academic activities they thought could be held digitally – and to what extent – in the future. 

What type of activities the respondents believed could be replaced with digital solutions after the corona crisis and to what extent.

Furthermore, our results show how digital activities have enabled greater accessibility and equality within the academic community. Researchers that would not have had the time, resources or possibilities to travel to various meetings could now participate in digital events on more equal terms. On the other hand, lack of access to stable internet connection and issues of time differences made certain meetings less inclusive and/or equal. A key takeaway is therefore that digital events have the potential to be more inclusive than physical events but that it is important to actively consider equality and accessibility aspects in planning.

Another eye-opener following the increased use of digital solutions is how these were used to reach a wider audience with research and education. Instead of having farmers or beekeepers travel to SLU to listen to a seminar or to take part in a course, the material was recorded and made publicly available digitally. In a research project reference group consisting of farmers, more had been able to join the meetings now that they were held digitally, as opposed to before when the group had to travel to SLU for each meeting.

Our study also found that there seems to be a need to improve how we use digital solutions and start thinking beyond the mere translation of a physical event or meeting into a digital one. The informants had a lot of useful insights concerning this and we have summarised some of these insights in the figure below. 

Six hacks for successfull digital meetings.

Lastly, most informants lacked experiences of networking in digital events as this part had been neglected when events were digitised and they stressed a need for new and inventive ways of networking digitally, moving forward.

New ways forward for academia post-corona

The participants clearly did not want to continue travelling to the extent they had before the pandemic. However, no one wanted to completely move from physical meetings to only digital solutions. It is time we find a golden middle way. Many expressed that they had begun to think in new ways about what makes it important to meet in person and what makes a business trip necessary or not.

“I’m sure you can reduce the amount of physical meetings quite considerably, and that the [physical] meetings you do have you can spend some more quality and preparations at them so they are well motivated and so that you get the most out of them. ‘Which are the good conditions and perks of meeting in person?’ And then make sure to optimise them.” – Professor

Although the pandemic has closed countless doors, it should in some respects be seen as a window of opportunity to make new decisions and do things in new ways. An opportunity to address and rethink what is actually possible in terms of reducing academia’s GHG emissions.

“There are surely plenty of ways to do this that we have never tried, that might be better than what we are doing right now.”Professor

Interesting questions remain: what will university managements as well as researchers make of this opening, what insights and new learnings will they bring with them into the future? Which new practices will stay on to become embedded within the culture of academia in a post-corona context?  We argue that the answers to these questions should lead to emission reductions in line with climate science. That decisions about what business trips actually are necessary are based on thorough evaluations of experiences from this pandemic, and that digital solutions are used strategically to replace longer business trips. The urgent climate crisis, combined with this unexpected window of opportunity, makes it crystal clear that the time for academia to change embedded practices, rapidly reduce emissions and take on a leadership role is now. Our study has shown that all of this can be done without compromising the quality of research. So what are we waiting for?

Controlling health threats that could spark future pandemics

Published

Written by: Kristina Osbjer, Researcher at the Department of Clinical Sciences, SLU and Technical Specialist for Animal Health, Food and Agriculture Organization of the United Nations.
The ïŹndings and conclusions in this blog post are those of the author and do not necessarily represent the views of the Food and Agriculture Organization of the United Nations.

Bat samling
Bat sampling. Photo: Kristina Osbjer

Although the Coronavirus disease (COVID-19) pandemic came as a surprise to some, the seeds of a Coronavirus pandemic, the weak signals, have been present for more than a decade. As governments and the civil society across the globe are struggling with containing COVID-19 and limit the impact, the research community can play an important role in formulating research to heed warnings and prevent devastating impacts of the next pandemic.

The COVID-19 origin is unknown, but we do know that Corona viruses are circulating in animals, in particular bats, and that some of these Corona viruses have an ability to transmit to humans. Most emerging infectious diseases (EIDs) and almost all recent pandemics originate from animals, most commonly wildlife, and the emergence is often involving close interactions between wildlife, livestock, and people with an elevated risk detected in forested tropical regions experiencing land-use changes and where wildlife biodiversity is high.

Asia – a hotspot for EIDs

South, Southeast Asia and China are recognised as hotspots for EIDs. The region is undergoing fast economic development, resulting in societal and environmental changes. Parallel with a growing population and rising incomes, the demand for higher-value and quality food such as meat is rapidly increasing. A preference for fresh meat from animals butchered at the counter together with limited access to chilling facilities lead to meat being commonly purchased in ‘wet markets’ where live animals are sold and slaughtered on site. In the case of avian influenza and SARS, viral spread to people from poultry and wildlife, respectively, was traced back to wet markets. Wet markets are also suspected to have played a key role in the initial spillover of Corona virus to humans, resulting in COVID-19. High animal density, limited hygiene and biosecurity practices in these wet markets are contributing to dissemination of viruses. Efforts have been made to change, and in some countries to ban wet markets—especially where many species, including wildlife are mixed. A temporary ban in wildlife trade was recently imposed in China as a result of COVID-19, however, enforcement of such bans remains difficult. The strong consumer demand for fresh meat and a range of social, economic and cultural factors contribute to sustain the markets.

Wet market in Asia. Photo: Kristina Osbjer

The rising demand for meat is spurring expansions in industrial-scale animal farming

More than half of the world’s pork and poultry is produced in Asia. In 2018, China alone had around half of the global pig herd and accounted for half of the global pork consumption. The rising demand for meat is spurring expansions in industrial-scale animal farming resulting in challenges in preventing and confining diseases. Low profit margins and weak animal welfare requirements commonly result in poor farm biosecurity and animal health management which in turn lead to an increased use of antibiotics. Antibiotic resistance, largely driven by the antibiotic consumption, is considered a growing global health threat and it is estimated that the livestock industry in China alone, will use up to 30% of the global antibiotic production by 2030.

The fast pig expansion has also resulted in the emergence of new diseases. In 2018 African Swine Fever (ASF) hit China as the first country ever in Asia, spreading rapidly to nearby countries leading to a loss of a quarter of the world’s pig population by the end of 2019. The ASF infect only wild and domestic pigs, but the high death rates and enforced massive culling to prevent further disease spread has led to huge economic losses and pork prices soaring to record highs. The extent of the impact of ASF on the global live animal and meat trade was unpredicted, and the disease has put a high pressure on Governments and a shift in animal movements. The lack of pork and higher pork prices have encouraged Asian consumers to substitute towards alternative protein sources, which most likely have changed the meat sourcing and supply in wet markets, including wildlife.  

Poultry sampling. Photo: Domingo Caro

A stronger multi-sectoral approach for disease prevention and control

The ASF spread to Asia and the global emergence of COVID-19 are reminders of how vulnerable our interconnected world is to global impact of diseases in humans and animals and highlight the need for broader systems thinking in the fight against EIDs. A single sector approach, neglecting the human-animal-environment interface and the socio-economic and cultural bearings of diseases will cause future failures in controlling health threats that could spark future pandemics. A stronger One Health approach in which multiple sectors work together to enhance health security and better public health outcomes needs to be fully adopted. Early evidence indicates that the health and economic impacts of the COVID-19 are being disproportionately borne by poor people. The biggest impact will be seen in low and middle income countries. It is of global concern to strengthen capacities in low and middle income countries to prevent, detect and control infectious diseases at the source, with an emphasis on early identification of, and response to, health threats in animals before they cause serious public health, economic, and development concerns. Here, the research community can play an important role in raising local research capacities and generate science to enable evidence-based policies and decision making to prevent future pandemics and safeguard public health and livelihoods.

Covid-19 lessons: Wildlife as our ally, not our enemy

Published

Written by Joris P. G. M. Cromsigt, Senior Lecturer at the Department of Wildlife, Fish and Environmental Studies, SLU.

Zebra
Photo: Joris Cromsigt, SLU.

The origin of the covid-19 pandemic, like previous major zoonotic disease outbreaks such as Ebola and HIV, has been linked to wildlife and the consumption of wild meat. Although the exact source of covid-19 still is a matter of debate, the repeated emphasis on wildlife as the original source is putting wildlife and the consumption of wild meat in a bad spot. Others, however, have emphasised that the problem is not the eating of wild meat per se. The problem lies in unsafe handling and processing of wild meat as well as in large-scale international trade and wildlife markets that keep wild species under crowded conditions and sell and slaughter wild meat on site. If wild meat is prepared locally immediately after the hunt following normal sanitary standards, the risk of zoonotic disease is negligible. Sweden and its moose harvesting culture are an excellent example of this. The problem also lies in the massive degradation of wildlife habitat, increasing the contact between wildlife and humans and in the management of the livestock-wildlife interface, since zoonoses frequently first jump from wildlife to livestock and then to humans. What I miss in the current debate, however, is the bigger picture. The fact that humans have been destroying wildlife and the ecosystems they live in for over 10,000 years. Below, I argue that this destruction lies at the root of many of our sustainability challenges, including increased zoonotic disease risk, and that solutions for these challenges lie in the large-scale restoration of wildlife and their habitats.

Restoring wildlife to fight zoonotic diseases

Many studies have highlighted that restoration of mammal diversity reduces disease risk, because predators and competing species prevent disease-carrying species to reach high densities and because in diverse communities species vary in susceptibility to infection by a pathogen. A recent meta-analysis by colleagues at my department at SLU confirmed that across the world increasing animal diversity reduces disease risk. Similarly, colleagues showed how predators, such as fox and stone marten in the Netherlands and Tengmalm’s owls in northern Sweden, reduce zoonotic disease risk. Using the owls as an example, they highlight that wildlife may even act as an effective early warning system of future zoonotic disease outbreaks. A recent paper goes even further by linking the Late Quaternary large mammal extinctions to the emergence of > 100 zoonotic disease outbreaks of the last 60 years.  The authors suggest that the concept of herd immunity goes beyond human-human interaction and that reduced interaction between human and non-human animals during the last 10,000 years reduced our resistance to emerging zoonotic diseases. This thought-provoking hypothesis remains to be tested, but what these examples really tell us is that we should not treat wildlife as the cause of the pandemic, but rather as part of the solution to fight it. Restoring wildlife communities and their habitats may be a very effective strategy to reduce zoonotic disease risk.

Photo: Graham Kerley

Rewilding as a nature-based solution for global sustainability challenges

I would like to zoom out even further by emphasizing that the current pandemic is not “just” a zoonotic disease problem but also a symptom of the global sustainability crisis. Solutions should thus focus more broadly on restoring planetary sustainability. Recent work suggests that the restoration of wildlife and their habitats can be a major part of these solutions. In the Megafauna & Sustainability unit we study how large mammals can be part of a nature-based solution for several of the Sustainable Development Goals. For example, in the programme Wilder Rangelands, a collaboration with Nelson Mandela University and Utrecht University, we look at the climate change mitigation and adaptation benefits of restoring native wild herbivore communities in African rangeland systems. In another example, we look at the effects of urban rewilding and greener cities on wildlife and people living in these cities.

Our work echoes others that highlights rewilding, i.e., the restoration of wildlife communities and their habitats, as a major natural solution. Rewilding increases the carbon sequestering capacity of ecosystems worldwide, from elephants and other mammals in our tropical rainforests, to wild grazers in the world’s grasslands, and the great whales in our oceans. Closer to home, reindeer help slow-down warming of the tundra in northern Scandinavia by limiting woody encroachment, and increasing surface albedo. Rewilding may also be a sustainable, long-term, solution for managing the risks of wildfires that are increasingly ravaging large parts of the world and even help mitigate the global phosphorus crisis through restoring global nutrient recycling. I could give many more examples.

How covid-19 threatens global wildlife conservation

Despite these examples, we still do not take wildlife restoration serious enough. For many high-level decision makers it remains a “nice to have” that is low on the priority ladder. In fact, the global response to the current pandemic forms a huge threat to global wildlife conservation. The emphasis on wildlife as the origin of covid-19 risks further alienating humans from wildlife, degrading support for its conservation. More urgently, the current pandemic highlights the weakness of a conservation model that depends on income from ecotourism and philanthropy and times of economic prosperity. This model is currently rapidly collapsing due to short- and mid-term travel bans and longer-term effects on economies. Already, in many societies communities are going hungry and increasingly depend on “bushmeat” to survive the crisis. We face a serious risk of conservation entering the dark ages, further marginalising wildlife into increasingly small corners of the world. Ironically, this will likely further increase the risk of future zoonotic pandemics.

The urgency of embracing wildlife as a natural solution to our sustainability challenges

Now is the time to come with a new model to conserve and, especially, restore wildlife. We can no longer accept conservation and wildlife restoration in the margin, for the show or as an indulgence. We need a model that sees the restoration of wildlife and their habitats as a serious natural solution to heal our planet and thus ourselves. Initiatives, such as the EU’s green deal, provide a shimmer of hope but are not enough. We need a serious global “Marshall Plan” for wildlife restoration. Accepting wildlife as a natural solution asks for massive, wide-scale restoration beyond our protected areas and beyond the introduction of certain flagship species. Such rewilding should not be confused with a wilderness without humans but restore a natural world that humans can actively benefit from. Natural solutions are SLU’s core business and it is our responsibility to now speak out and step up. We are in the hot seat in terms of finding more sustainable, nature-based, solutions. The alternative, of course, is driving all remaining wildlife species, and their associated zoonotic diseases, to extinction. I do not want my children to inherit such a world. Solutions towards the current, and future, pandemics do not lie in further alienating us from wildlife. Solutions do not lie in treating wildlife as our enemy, but in embracing it as our ally.

COVID-19 and Food Security

Published

Written by: Assem Abouhatab, Sofia Boqvist, Sara GrÀslund, Ylva Hillbur and Rodomiro Ortiz
Swedish University of Agricultural Sciences (SLU)

Farming close to Mbeya, southeastern Tanzanian highlands.
Photo: Rodomiro Ortiz, SLU

Reflections on Sweden’s Global Contribution to Agenda 2030

During a short time span, COVID-19 has spread rapidly across the globe, resulting in hundreds of thousands of deaths. The underlying causes of the pandemic are linked to the virus crossing the species barrier from animals (likely wildlife) to humans, with subsequent spread within the human population. While the links between livestock and human health are well established and increasingly acknowledged, there is great potential in developing the One Health approach further. In 2019, the UN biodiversity panel established that emerging infectious diseases in wildlife, domestic animals, plants or people can be exacerbated by human activities such as land clearing and habitat fragmentation.

The outbreak has so far hit Europe, East Asia and North America the most and there is fear that the infection will spread uncontrolled in Africa with severe consequences for poor peoples’ health and food security. The World Food Program recently alerted the UN Security Council that the pandemic could push another 130 million people into hunger this year. Poor people are particularly vulnerable for infections like COVID-19 as they often live in areas with poor sanitary conditions, have restricted access to health care and lack economic safety nets.

While the outbreak of COVID-19 has led to both a global health emergency and is unfolding a global economic crisis, it could also result in food insecurity, particularly when food supply chains are disrupted. Preliminary reports show that the pandemic has indeed disrupted global agricultural supply chains; slowed down global agricultural trade; and obstructed transportation, logistics and distribution channels as borders have been shut. In this regard, about 16 countries have issued food export restrictions or bans to ensure national stock and avoid food price inflation. The spread of the pandemic has further disrupted many activities along the agri-food supply chains and posed significant challenges to the food systems, especially in low-income countries where employment, livelihoods, food and nutritional outcomes, and many other essential services are derived from agriculture. As an example, the number of people at risk of food security may rise to 50 million  in West Africa – a region in which 35% of the economy depends on agriculture.

The immediate threats posed by COVID-19 to agricultural supply chains include the disruption of rural labor markets, which may impede farming and food processing activities. Some food supply chains in low-income countries are facing challenges related to growers –particularly smallholders– accessing inputs for their farming, being in their fields for planting, cultivating and harvesting their crops or breeding and feeding their livestock, managing animal and plant health in their farming systems, and actively participating in the output markets to sell their produce. In addition, farm labor shortages may result from mobility restrictions, while urban food processing may be put on hold due to delays on getting raw materials. In terms of consumption, the closures of restaurants and reduced visits to grocery and food markets decrease demand for fresh food and livestock products, affecting producers and suppliers. Food demand in low income countries is closely linked to income, and the loss of income-earning opportunities could affect consumption. The International Food Policy Research Institute estimates that the pandemic may cause 140 million (of which 2/3 are from Africa and remaining 1/3  from South Asia) to fall into extreme poverty in 2020.

Grazing livestock, West Pokot, Kenya. Photo: Eva Wredle, SLU

Food supply chains may be further troubled when considering that many nations depend on trading among each other staples, animal feed, fertilisers, machinery or pesticides. Hence, in order to guarantee affordable access to safe food for meeting the demand of their populations, it is crucial that international trade continues. Another global recession may further reduce the demand for rural output and labour. The announced economic stimulus packages by many nations should therefore provide means for stimulating the recovery of the rural economy in low-income countries to build an agriculture that should be increasingly resilient to shocks such as pandemics. In this way, they will also show their commitment to Zero Hunger and meeting the targets of Sustainable Development Goal 2, aiming to warrant that everyone everywhere is able to eat enough good-quality food to ensure a healthy life. Such an objective needs to improve sustainably the agricultural productivity and increase the profits of smallholder farmers by allowing them to fairly access land, technology and both input and output markets.

Sweden has a strong commitment to Agenda 2030 and to supporting low-income countries as demonstrated by its international development cooperation, government strategies and research agendas.  In the current crisis, we must keep the momentum towards the Sustainable Development Goals and move into the post-pandemic era with an ambition to increase resilience of communities and sustainability of the food systems by:

  • Reinforcing international partnerships. International collaboration focusing on exchange of knowledge and ideas and mutual capacity development is crucial for a sustainable development across the globe. International collaboration and national development go hand in hand.
  • Increasing resilience and sustainability of the food systems. Climate change has profound impacts on the food systems. Increasing farmers’ resilience to climate change will reduce their vulnerability also to pandemics and other shocks. As described by the UN climate panel, there are great opportunities for response options that provide co-benefits for climate change mitigation and adaptation as well as food and nutrition security.
  • Implementing One Health approach in practice. In order to fight health issues at the human-animal-environment interface a multidisciplinary and holistic approach is needed. Increasing collaboration between sectors is crucial, with integration of human health, animal health and conservation and sustainable use of ecosystems, to prevent future pandemics and other health threats.
  • Enhancing the understanding of the effects of the pandemic on food security. Pandemics will happen again. So, we need to learn and adapt to be more resilient next time. It is important for all countries, including Sweden, to minimise the impacts of pandemics on domestic food chains and markets, e.g. the potential impact through disruptions to the global agricultural supply chains and agri-food trade.

International research cooperation will boost the productive and resilient capacity of low-income countries’ agriculture, particularly if embracing a holistic, transdisciplinary and enlarged One Health strategy; i.e., integrating human, animal, plant, soil and environmental health following an innovative approach for research in development under a changing climate. The outputs of such an approach will contribute to a fair remaking of the social contract that may emerge after the COVID-19 pandemic. To increase food and nutrition security for all, it is therefore crucial to keep the momentum towards Agenda 2030.


SLU contributes to Agenda 2030 through our mission to develop knowledge and capacity for sustainable management and use of the biological resources. To contribute to food security and Zero Hunger, we are for example currently partnering in Sida’s long-term bilateral research capacity programs through training of researchers in fields of relevance to food security in Bolivia, Cambodia, Ethiopia, Mozambique, Rwanda, Tanzania and Uganda. AgriFoSe2030 is another Sida financed program where SLU jointly with Stockholm Environment Institute, Lund University and the University of Gothenburg supports actors in Africa and Asia to develop capacities to translate food security science into policy for impact. SLU furthermore works with the African Union and the EU Commission to map and capture knowledge from past and ongoing initiatives for food and nutrition security in Africa in the Leap4FNSSA program to improve efforts in the future. Explore more of SLU’s global partnerships and programmes at www.slu.se/slu-global