This blog post was written by Gun Lidestav, Mats Sandewall (Department of Forest Resource Management) and Torgny Söderman (School for Forest Management) at SLU
For more than 35 years SLU has been engaged in a development cooperation with Ethiopia on building a faculty for forest and natural resources at Wondo Genet. More than a hundred Swedish and thousands of Ethiopian students, teachers, researchers and staff have been engaged in the endeavour. Today Wondo Genet College of Forestry and Natural Resources is a national university faculty and an educational institution that provides the Ethiopian society and government with sector staff and specialists.
A strong profile in the cooperation was Mersha Gebrehiwot. She was one of the first female Bachelorâs students from Wondo Genet in the joint SLU-Wondo Genet academic programme that started at SLU, Skinnskatteberg, in 1987. Mersha first got a diploma degree from a Sida sponsored programme at Wondo Genet followed by a Bachelor of Science in Forestry from SLU/SkogsmĂ€starskolan (1988-1990). She then worked as a teacher at Wondo Genet and she later built her academic career through a Masterâs degree and a PhD from UmeĂ„/Skinnskatteberg and worked within the cooperation until 2022.
As a teacher, Mersha was an inspiration, especially to female students. But above all she was down-to earth in her teaching role in forestry subjects and she engaged herself in the relations between the staff of the college and its surrounding people, be it âencroaching loggersâ or farming communities. For us foreign guests at Wondo Genet, Mersha was the one who always looked after us with great generosity.
As a researcher and development agent, Mershaâs desire and drive was always “to make a difference”. Her doctoral thesis is a good example of that. Her attitude influenced her choice of subject, research questions, scientific methods and the way she carried out the fieldwork. With respect and integrity, she approached complex problems on how land use changes affects food and livelihood security and the survival of the women and men in rural households. Her informants were not only data sources but also real people to whom she constantly related her research. It also characterised how she communicated the results, regardless if it was among local farmers or high-level decision makers.
In all these respects, Mersha set an example to all of us who did research and development together with her. For those who have a particular commitment to issues of gender equality her involvement in IUFRO Research Group âGender and Forestryâ was essential. With Mersha as the local organiser, the 3rd Gender and Forestry Conference was successfully carried out at Wondo Genet College in November 2013. The conference involved 50 researchers and students from Africa, Asia, Europe and North America. (Recently, she contributed to the ongoing programme, Catalysing the Ethiopian Forest Sector Development, by describing gender gaps and gender mainstreaming efforts, and training of forestry extension agents in gender-sensitive approaches.)
Mersha had an admirable ability to find herself in the most varied environments and contexts, and thus also make others feel comfortable and appreciated. We are many friends and colleagues that miss her, but just as many who draw inspiration from the example she will continue to be.
A scholarship fund is being established based on donations from Swedish and other colleagues in the memory and spirit of Mersha for providing awards to Wondo Genet students (further information through Torgny.Soderman@slu.se)
By: Maja Malmberg, Researcher at the Section of Virology at the Department of Biomedical Sciences and Veterinary Public Health at SLU and Ekaterina Bessonova, Communications Officer at SIANI. This blog was originally posted at SIANI website
Few of us have ever imagined living through a pandemic. With all the global progress and achievements in medicine, a contagion seemed like something from the dark ages. And here we are, battling a noxious virus that set foot in every country, bringing disease, disruption and dismay.
Covid-19 outbreak is still unfolding, and we are yet to fully experience its effect on our societies and lives. However, itâs worth looking into how this coronavirus came about and reflecting on what can be done to diminish the possibility of another pandemic.
How did Covid-19 emerge?
SARS-CoV-2 or Severe Acute Respiratory Syndrome Coronavirus 2, the virus that causes Covid-19, is most closely related to coronaviruses in bats, meaning itâs a zoonosis â a disease that pass from an animal or insect to a human.
Other examples of zoonotic diseases include such scary names as HIV, Zika and Ebola. But Covid-19 belongs to the same family of coronaviruses as SARS and MERS.
The outbreak of SARS in 2002 resulted in 8,098 cases and 774 deaths in 26 countries. Emerging in Saudi Arabia in 2012, MERS brought about 2,494 cases and 858 deaths in 27 countries. Both of them are thought to be bat viruses that got to humans through an intermediate host (civet cat and camel).
Comparing to its âfamily membersâ, SARS-CoV-2 has certainly been more effective in infecting humans â the number of reported cases has already passed over 400 000 and rising. The virus was only discovered in January 2020 and much more research is needed to fully understand it. Nevertheless, there are things we already know.
Thanks to its structure, which is essentially a spiky ball, the virus easily attaches to the surface of certain human cells, initiating infection. Unlike most of the respiratory viruses that infect either upper or lower airways, SARS-Cov-2 seems to infect both. Generally, upper-respiratory infections are easily transmitted and usually mild; lower-respiratory infections donât spread as easily but are more severe. Additionally, the new coronavirus can be stable on surfaces for as long as 24hours, which along with the fact that humans do not have immunity against it, facilitated such rapid spread around the world.
Exactly when and how the virus has first infected humans remains to be determined. It could have come from bats to humans directly or passed through another animal. Coronaviruses are famous for their ability to exchange part of its genome, the so-called recombination, something that makes them prone to change hosts.
Covid-19 is believed to originate from a wildlife market in Wuhan, China where alive wild animals were sold and butchered on the spot, usually using the same slaughtering tools for different species, which creates favorable conditions for the virus to jump from animals to humans. Such markets are a perfect melting pot for new viruses to emerge and spread. However, there are reports of early cases of Covid-19 in people with no links to the market, suggesting the initial point of infection may have been in a different place.
Biodiversity, biosafety, bioinformatics: A virus risk management strategy
Prompt by the ongoing epidemic, China announced a permanent ban on wildlife trade and consumption. The global community greeted this measure as a major step, though the ban has already been criticized because it allows the trade of animals for fur, medicinal purposes and research. Additionally, China announced a similar ban in 2002 in connection to the SARS outbreak, but enforcement was relaxed after the epidemic was over and the trade rebounded.
Banning trade of wild animals is a straightforward measure to limit exposure to new pathogens. However, it is not the only reason behind the Covid-19 outbreak. Diminishing the emergence of new zoonotic diseases requires holistic strategies that reduce risks across several dimensions and make our societies more resilient to virus outbreaks.
First, all development strategies and activities must prioritize biodiversity and find a way to create jobs, generate incomes and increase wellbeing, without destroying nature.
The emergence of new pathogens tends to happen in places where a dense population has been changing the landscape â agricultural expansion, deforestation, construction, mining â all contribute to the loss of natural habitat. So, the area occupied by human activity is becoming larger, while wild animals are squeezed into shrinking spaces. That is why animals that wouldnât normally come in contact with humans do so to a higher extent, increasing the risk for exposure and spread of viruses wild animals carry and that we have not experienced before.
For instance, recent research from the Swedish University of Agricultural Sciences (SLU) indicates that large forest fires can increase the spread of rodent-borne diseases in Sweden. However, the risks of emerging zoonotic diseases are especially high in the forested tropical regions experiencing rapid land-use changes and with high wildlife biodiversity.
Second, livestock industry and farmers have to implement adequate biosafety measures
Covid-19 sparked discussion about whether animal-based diets play a role in the emergence and spread of unknown and dangerous viruses. While there is plenty of research pointing that moderate consumption of meat has strong health and climate benefits, to what extent livestock production represents a risk of emergence of zoonosis depends on production management factors and country context.
For instance, small scale organic livestock farming is based on the principle that animals roam close to natural forests. This method is praised for animal wellbeing and lower environmental impact, but it makes contact between domestic animals and wildlife more likely. At the same time, industrial farms would usually keep animals isolated, creating conditions that prevent the spread of diseases from wild animals, however, because the animals are kept so densely to each other, diseases spread fast within the herd. Furthermore, plant-based diets that utilize a lot of commodities like almonds, soy, avocadoes and cocoa arenât necessarily deforestation-free.
Another key point to consider is that vegan diets may not be the best option for people in low-income countries with high malnutrition. Milk, eggs and meat are highly nutritious, so many people keep animals at home for food and for insurance in times of need. There are also traditional pastoralist communities who live in drylands. For them animal husbandry is not only a source of food security, but also the core of culture.
For these reasons, increasing biosafety standards may offer a more appropriate way to reduce the risk of zoonotic diseases than excluding animal-based foods. Some common measures include keeping animals outside of the house, introducing designated areas for slaughtering and ensuring these facilities and people who work there practice well-executed hygiene and sanitation of all processes and equipment.
Third, funders need to ramp up investment in virology and bioinformatics, while the international community needs to improve cooperation, increase local capacities and raise awareness about these fields of knowledge.
The risk that new viruses can emerge and spread will always be there. But it is possible to minimize the losses by means of fast accurate detection and early response. Mapping the existing viruses in all animals will help us know what is out there and start developing technologies and strategies that can help us prepare and cope with possible outbreaks, pivoting from reactive to a proactive response. Advancing bioinformatics and virology will not only help us develop vaccines, but also anticipate pandemics through monitoring of threats while they are still evolving in animal populations.
Raising general awareness about what viruses are, how they spread and how one can protect from them is also key. Knowledge can conquer panic and prevent the creation and spread of conspiracy theories and fake news.
By: Alin Kadfak SIANI-SLU Global Communicator and Researcher at the Department of Urban and Rural Development at SLU This blog was originally posted at SIANI website
Aquaculture has a tricky reputation; the fish meal is one reason why. But with new research from the Swedish University of Agricultural Sciences (SLU), the unsustainable fish feed can become a problem of the past.
Low in saturated fats and high in omega-3, fish has become a popular food choice. Some regions of the world, like Oceania or coastal countries in Asia and Africa, have always had fish-based diets, but recent trends in healthy eating among Americans and Europeans has driven the demand up. Now, we eat fish twice as fast as the fisheries can reproduce. So, unfortunately, the change of heart in eating habits depleted global fish stocks. And, more and more of the fish we eat comes from fish farms.
But the origins of fish feed are yet another sustainability controversy.
Quality fish meal is essential for optimum development, growth and reproduction of the fish. Traditionally, fish meal has been made of wild-caught fish or by-products of fish waste. This conventional method doesnât only put pressure on marine resources, but also competes for food security because local people could eat the small nutritious fish, instead, it is used for animal feed.
Plant-based feeds were developed to address these concerns. And in the last three decades, plant-based feeds took over animal-based feeds and became the main ingredient for fish meal across the aquaculture industry.
However, this solution brought other challenges: the production of plant-based feeds increases the pressure on land. For example, soy, which is often used for making fishmeal, requires a lot of land, fertilizer and freshwater. Soy farming is notorious when it comes to deforestation in the Amazon and environmental destruction in the Brazilian Cerrado. That is why, for instance, Norwegian farmed salmon producers banned fish meal ingredients made from Brazillian soy.
So, the fish industry is still on the lookout for a better protein substitution.
Alternative protein for farmed fish
Using microbes, like yeast, fungi, microalgae and mollusks to feed farmed fish has gained attention in recent years. These four categories of microorganisms are promising and can potentially help us make a breakthrough in the sustainability of aquaculture. For one thing, these microorganisms can feed on various carbon sources, including waste streams from wood industry or marine productions.
SLU aquaculture research team partnered with scientists from Norway, Vietnam, Cambodia, Australia, Tanzania, India and Rwanda to develop sustainable aquaculture feeds. Micro-fungi is the most promising microbes â the team can replace 20% of soy-based feed for salmon with the protein extracted from micro-fungi without any side effects. SLU researchers are also looking into making quality fish feed from insects that feed on household waste. Some promising research with black soldier flies has already been done and applied at scale to treat organic waste and to produce animal feed at the same time. Another fishmeal substitution could be muscles, and their use has been successfully tested by researchers at Södertörns högskola, another Swedish university.
The pilots are yet to be scaled up and industrial development of the sustainable fishmeal will certainly require closer collaboration between the industry and the researchers as well as further research on its own. However, insects, yeast and fungi can be another rising star in the kingdom of alternative protein, at least in the field of animal feed.
What can consumers do for now?
KRAV, Swedish Sigill and ASC are the main sustainable aquaculture labels available in Sweden today. Apart from fish meal, which is considered to be main focus in the sustainability of aquaculture, these standards also take into consideration animal welfare (if the fish is grown in a cage and the use of medicine), land and water pollution, and slaughtering practices. For instance, KRAV is currently working on their new KRAV label in aquaculture to improve the feed the slaughter method. ASCâs standard includes limits on the use of antibiotics, water purification and traceability to the cultivation site. ASC has also added social criteria to their standard, such as freedom to form an association and a ban on child labour. Svenskt Sigill is a new label, which focuses mostly on fish that grow in closed systems on land. Consumers can study and pay attention to these labels before buying aquaculture products in Sweden.
So, who knows, maybe we are at the crossroads for the next paradigm shift in aquaculture feeds!
Trees have extraordinary powers, especially when it comes to water. But such powers must be wielded with care.
Trees have extraordinary powers. They provide shade, cool the local climate, draw carbon dioxide from the air, and can repair and replicate themselves while running on little more than sunlight and rainwater (PokornĂœ 2018). They also contribute numerous goods and services like fruit, wood and soil improvement with a wide choice of species and varieties suitable for different needs and conditions. But such powers should be wielded with care.
On the 5th of July 2019 Science published an article by Jean-François Bastin and colleagues titled âThe global tree restoration potentialâ. In it, they explain how, without displacing agriculture or settlements, there is enough space to expand the worldâs tree cover by one-third or around one billion hectares. Such increased forest would eventually reduce atmospheric carbon by about a quarter. A lot could be said about this proposition, much of it supportive. But in a brief comment piece just published in Science, colleagues and I highlight some reservations along with some even bigger opportunities. We focus on water.
The idea that the protection and restoration of tree cover could improve the climate while providing other benefits is well established. Indeed, there have been numerous international programs based on this including REDD âReducing Emissions from Deforestation and Degradationâ, the Bonn Challenge, which seeks to reforest and restore degraded land, as well as various related programs.
So what is new here?
Well, what Bastin et al. have done is estimate the scale of this opportunity and the contribution that restoring tree cover could make. For example, they list such estimates country by country as a âscientific evaluationâ with relation to restoration targets specified under the Bonn Challenge. Under these targets, and those specified by the New York Declaration on Forests, an impressive list of countries (59) have undertaken to end deforestation and to restore 350 million hectares of land by 2030. They note that several of these countries have committed to restoring an area that âexceeds the total area that is available for restorationâ. They note how these results âreinforce the need for better country-level forest accountingâ.
Yet there is a paradox lurking within these claims. The authors state that their estimates are not âfuture projections of potential forest extentâ. So what are they?
In brief, their assessment represents an estimate of potential tree cover assuming current environmental conditions and no influence or modifications arising from the trees themselves. But large-scale changes in tree cover would modify these conditions.
Trees and forests influence the availability of water and water influences the degree to which a landscape can support trees. While current tree cover reflects current conditions, any assessment of the prospects for large-scale changes in tree cover must account for how these changes will influence those conditions. Potential tree cover should reflect the conditions that would exist with that tree cover.
This may seem esoteric, which may explain why it was not raised in the extensive media coverage, but these details matter. They matter a lot.
Access to adequate fresh water is a key development challenge and is central to the United Nations Sustainable Development Goals. Around half a billion people suffer insufficient fresh water year-round while many more face seasonal scarcity. Such shortages cause hardship and are widely believed to play an increasing role in the complex of issues that increase the likelihood of conflict and migration. With relatively fixed fresh water resources and a growing population, the global fresh water resources per person are declining.
As we highlight in our comment, trees influence the availability of water both locally and regionally. Neglecting these influences undermines the value of the estimates and renders them near meaningless. This affects both the technical aspects of the estimatesâthe variables used to predict tree cover would change, and more importantly, the wider implications for people and life on the planet.
Tree cover influences water availability through a range of processes and mechanisms. Only some of these are well understood. But we know enough to know there will be impacts.
Impacts can be negative. Where trees use a lot of water this can accentuate local water scarcity. There are many examples where dense plantations have caused a decline in local stream flows and depleted groundwater when compared to open lands. This is crucial, but far from being the whole story.
Impacts can also be positive. This has been shown by studies in Burkina Faso where landscapes with some tree cover captured several times more water than otherwise comparable tree-free landscapes. In this case, the costs of increased water use are more than compensated by the increased soil infiltration and moisture storage. Trees and forest also provide water vapour and condensation nuclei (the particles that promote cloud formation) that can contribute to rainfall elsewhere. Thus, it is clear that tree cover supports rainfall downwindâand many people depend on such rainfall.
The power of such recycling suggests that if tree cover in drylands can be expanded in the right manner, it can generate increased rainfall, thus opening the opportunity to increase regional moisture and land able to support trees and forests. In addition, an exciting new theory, the Biotic Pump, suggests that forest cover plays a fundamental role in generating the winds that carry moisture into continents. This theory conforms with observations in the Amazon region concerning how rainfall relates to changes in air pressure, and how forest derived moisture controls the monsoon. In effect, we could develop a system that waters itself and thereby regreens the worldâs deserts. We could, for example, imagine returning a much wetter climate to the Sahel of Africa or to Western Australia.
So how can we avoid the negatives and promote the positives of increased tree cover? We donât yet know the optimal way. Likely we may not even agree what âoptimalâ implies. My personal view is that, if we emphasise the protection, expansion and restoration of natural vegetation that can regenerate and maintain itself (rather than industrial plantations), the positives are generally more likely. The rationale is that nature has evolved effective systems for distributing and maintaining water. These are the systems that kept the world green and productive long before people got involved. (Such restoration is what Bastin and colleagues are suggesting, though much of the media attention discussed âtree plantingâ more generally as if this is equivalentâit isnât).
But there are plenty of good reasons to promote tree cover even in productive landscapes and to identify how we might green large areas of our planet. The potential to bring more water into currently arid regions seems a real opportunity. We can also look for ways to ensure that plantations, where justified, are developed without wider environmental costs. Natural systems can provide both template and inspiration.
But it remains true that negative impacts can still result, especially as what may be optimal at a continental scale may not be ideal at more restricted scales, and patches of regenerating forest may deplete local water even if it boosts rain downwind. When tree cover does boost groundwater in arid regions there can be additional challenges if this raises salt within the soil profile.
Looking beyond water there is no shortage of additional concerns. For example, we need to ensure people benefit, we need to protect key grasslands and we need to ask why the tree cover was depleted in the first place.
There are many good reasons to protect and restore tree cover and other natural vegetationâwherever and to the degree that that is possible. There are also plenty of good reasons to promote agroforestry and to encourage even scattered tree cover where that is possible within productive landscapes.
Our point is that there will be wider impacts than those on atmospheric carbon alone. Many impacts are likely to be positive, increasing greenness, stabilising rainfall, and reducing biodiversity losses. But widespread tree planting can also cause harm, displacing people and biodiversity and contributing to water scarcity.
The power of trees is often underestimatedâit is a transformative power with capacity to achieve great good and great harm. Please use it wisely.
By: Rosa Goodman, Associate Senior Lecturer at the Department of Forest Ecology and Management; Tropical Forestry and Land Use Management Unit at SLU.
In May 2019, I went to Brazil to see if we (the Swedish Forest Agency, Stockholm Water Institute, and SLU), could set up a cooperation with SĂŁo Paulo Secretariat for Infrastructure and Environment (SIMA) to work on issues surrounding forests. This was my first time being part of a delegation and this is my first blog.
I have lived, worked, studied, and traveled extensively in 28 countries and have realized that I have an underlying life motto that âI cannot say no to a new countryâ. Every time I travel, I learn something new, something sad and something beautiful. Plus, as a tropical forest researcher, Brazil and its vast share of the worldâs tropical forests are of peak importance to me. Many Brazilians, like the rest of us, are worried about the new government and eager to start an official cooperations with outsiders. This is what hooked me. If there is any chance to protect and even restore the worldâs largest tropical forest, I am in.
Jair Bolsonaro is the Brazilian Donald Trump â on the far, far right, defends dictatorship and torture, and belittles women, minorities, and homosexuals. He was elected with the agenda to promote agri-corporation and exploit the countryâs natural resources (which include a quarter of the worldâs remaining tropical forests) and weaken environmental enforcement. He initially planned to merge the Ministries of Agriculture and Environment (presumable to weaken the Ministry of Environmentâs autonomy and authority), but even agribusinesses opposed this citing unworkable differences.
In SĂŁo Paulo, infrastructure and environment (two classically conflicting entities) were merged into a single ministry, SIMA. Fortunately, the members of the three institutes we met are striving to make this merger work to their advantage. In a time of uncertain and frightening political regimes and corruption, it was certainly a breath of fresh air to meet government officials with such dedication and sincerity â and with a mission aligned with mine.
On the
first day, we met at the SIMA office in SĂŁo Paulo. They wowed us with impressive large-scale restoration
initiatives, data collection and management, geospatial analyses and landuse
change detection, and complicated and
complex socioeconomic-geopolitical-biophysical modelling. Brazil is quite
unique among tropical countries in terms of excellent education, advanced
technology, and producing many very impressive scientists and practitioners.
We also
learned that the state of SĂŁo Paulo is unique. It occupies less
than 3% of the land and produces over a third of the countryâs GDP. SĂŁo Paulo State often leads Brazil in policy-making, as other states often
adopt policies set in SĂŁo Paulo. This is comforting because SĂŁo Paulo seems to be quite progressive. The downside is that SĂŁo Paulo state does not contain any of the Amazon basin forest.
In fact, SĂŁo Paulo hosts the Atlantic forest â one of the most threatened ecosystems on Earth. They are far more into protection and restoration than extractive management, and it is illegal to harvest or sell timber from native species (unless you planted it or are from an officially recognized traditional community). I certainly donât blame them â there isnât much Atlantic forest left and a lot can go wrong when timber harvesting is allowed.
We are thus stuck in the endless debate: Do we try to do the best thing for biodiversity and ecosystem services and strictly protect and restore the remaining natural forests â which all cost money and often perversely incentivize land conversion (aka, deforestation) to alleviate the responsibility of forest protection? Or do we try to be realists and encourage management of natural forests since it is the only business model that encourages the maintenance of natural forests? On the other hand, this strategy is also quite idealistic because it relies on both high technical capacity (to plan and carry out sustainable forest management) and honesty (ie, lack of corruption and bending of the rules). The forest industry seems to be forever plagued with corruption â as activities take place in remote locations, are so difficult to track, and require time scales much longer than our current economy and political systems accommodate. In any case, water and the connections between forests and water, are high on their minds after years of barely eking though a nearly catastrophic drought.
We spent the next day at Serra do Mar State Park with people from the Forest Foundation talking about just this. The Forest Foundation is full of do-gooders and nature lovers. They focus on protected areas and have developed a model to quantify the water ecosystem services provided by Stateâs protected areas and conservation units. Together the protected areas, conservation units, and Green Belt Biosphere Reserve provide a whopping 60% of the cityâs water supply, and adding a fee to protect these water-providing areas would cost the average household a mere 0.50 USD each month. Everyone surveyed said they would be happy to pay this extra fee for water use â except that they donât trust this money would actually be used for this.
In all my experience in countries across the globe, I have identified corruption as the biggest barrier to progress. There are so many good ideas and good people wanting to implement them, but nothing works with corruption in the equation. Funds disappear, regulations are prohibitive (especially against those trying to do things legitimately), people get frustrated and give up â or decide they are much better off participating. As the drug lords have taught us: plata o plomo (silver or lead). You would have to have a superhuman moral conviction and nonattachment to your own life to choose a bullet over a bribe. So corruption spreads and thrives like the most infectious disease and holds us in this global epidemic.
The notable lack of corruption, and instead a great
sense of working together and following the rules (because thatâs how you
maintain a functioning society), is one of the things I love most about Sweden.
Americans (I am an American) tend to fear that countries with such a strong
social welfare system cannot survive: âIf the State just takes care of
everybody in need, how can they afford that? And why would anyone even bother
working?â What I have figured out is that when you take corruption out of the
equation, there is plenty to go around. Itâs a beautiful way to run a country.
While in the state park, we got to take a gorgeous walk on Pirapitinga trail and visit the ParaĂba river. We spent ample time on the misty rocks enjoying the power and beauty of the waterfalls crashing and flowing all around us. Water is life. Oxygen is life. Life is life. It is always good to reconnect with the reason I dedicate my life to conservation and sustainable management of our precious natural resources.
We had feijoada for lunch â a delicious meal of beans and rice and veges, and there was even a vegetarian version. Most people at Forest Foundation joined me in eating the meat free version, which makes me quite happy because I really respect authenticity and applying what we know to our own lives. I personally canât talk about reducing deforestation and eat cows. But I will admit that I still fly around talking about mitigating climate change. I donât take flying lightly, but I also havenât found a proper alternative to real, in-person connection with other people and places. This a real conundrum. Traveling has made me a far more aware, compassionate, open-minded, and dedicated global citizen. It also leaves a huge carbon footprint.
I had an excellent conversation with Gerd, president
of the Forest Foundation, about modeling, complicatedness, and complexity plus
personal resilience. He builds hugely complicated models with input data from
every sector and discipline and then injects them with complexity (e.g., a new
president) to see how a new policy might play out across Brazil. I asked him
how accurate his predictions have been. Gerd responded that the point is not
about predicting the future but telling a story that changes things now. Human
brains love stories, but I think that biologists, foresters, and climate change
scientist are pretty slow to catch on.
We also visited the Coruputuba Farm in Pindamonhangaba. It is a beautiful agroforestry system and an even more beautiful story. Someone from the government asked Patrick if he had ever heard of agroforestry. Patrick had not, so he did a Ph.D. on the topic (on this own land) and practices agroforestry to this day. His love and enthusiasm for life and his land was abundant and inspiring. Patrick produces high quality products, but it is difficult to market because of scale. He cannot provide an entire industry with a steady supply of timber, fruit, or vegetables, and cooperation and coordination among a bunch of farms in the region is hard to put together and operate.
I am a natural scientists, and the more I learn about markets and economics, the more I wonder how the world works. I have seen a lot of struggling corn fields and acacia plantations â and zero goji berry or ginger plantations â so it seems like magic all these products are supplied to global markets.
During the day, someone commented that only rich people who inherit their land can do this kind of thing â grow niche vegetables on prime land. In a time when the richest 1% of people control over half of the worldâs wealth, I think it is something to encourage. If the ultra rich want to do something, it happens. And we donât need to be anywhere near the top 1% to start doing good things with the assets we have â land, money, time, effort â or forgoing further accumulation of assets. How to be satisfied with âenoughâ is another area where Swedes have a lot to teach the world (see âlagomâ).
After years of declining deforestation rates in Brazil (since 2004), there has now been a huge spike â to which environmental organizations have responded in outcry and the President Bolsonaro responded by undermining the data and monitoring system and blaming environmental NGOs. The German and Norwegian governments then suspended donations to the Amazon Fund (a REDD+ mechanism to protect the Brazilian Amazonian forests and monitor deforestation), and Mr. Bolsonaro closed the steering committee. The situation looks grim. But as Mr. Rogersâs mother told him, âLook for the helpers. You will always find people who are helpingâ. I was personally amazed and inspired by all the âhelpersâ we met at SIMA. I have never met and traveled with government officials before, and I had no idea how dedicated and sincere these people remain in the face of great challenges.
This loops
back to the age-old question of why we Westerners work in tropical countries. I
am reminded of a very honest meeting I had with a top forestry official in
Malaysia. He was frustrated with all the corruption in his country and became a
proponent for international agreements. He said the outside eyes really help
combat the rampant âhanky pankyâ that goes on within forest management. This is
exactly where Sweden is a shining star of nearly impeccable honesty and
rule-following (mind you, I say this as an American who has lived here for 2.6
years). I commend SIMA for reaching out and believe that we (Swedish Forest
Agency, SLU, and other Swedish actors) can and should do what we can to support
them through this cooperation.
Is there any hope left amongst the flames?
With all the new reports of the Amazon on fire!, I have had to take several deep breaths and re-evaluate whether there is any room for hope left. Over 70,000 fires are burning; indigenous groups and other activists are being murdered, and so on. I spoke with a friend last month who said that the insider info is even worse: âBetween the intentional fires and the drought fires (intentional fires out of control), we basically hit the point of no return yesterday â a tipping point where the forested areas are no longer substantial enough to facilitate the humidity necessary to maintain. In terms of global climate processes, this could be a big deal â currents and trade winds big deal. Flora and fauna are losing their refugia so fast they have nowhere to run. Brazilian organizations have been cut off at the knees. Brazil has a âburn baby burnâ motto and environmental and indigenous activists have been getting murdered left and right. Everyone in Brazil is scared.â Devastating.
I checked the news to see how much has burned so far. I found one report that said 500 million hectares in 16 days. This is pretty impossible considering the country is than 852 million ha, and only 472 million hectares had tree cover in 2018 (about 303 million hectares in the Brazilian Amazon). Other reports say that about 345,000 hectares have been burned between January and early August.
To put this in perspective, almost 3 million hectares were cleared in 1995 and about 2.75 million in 2004. Then, deforestation rates in Brazil dropped to around half a million hectares from 2012â2014. Since Brazil is home to roughly a quarter of the worldâs remaining tropical forests, what happens in Brazil is globally significant. Global deforestation rates dropped, and the perceived threat and attention to tropical forests also dropped. Since 2015, deforestation rates in Brazil have risen to about 0.8 million (800,000) hectares in 2018.
To be clear, clearing forest, primarily though burning takes place absolutely every year. Cattle ranching is responsible for over 2/3rds of this and agriculture is responsible for at least a quarter. Skies are often clouded by smoke in the dry season, which is now. Also, non-forested lands are burned repeatedly, so not every hectare that burns means a hectare of forest lost. That said, many Amazonian states are reporting major spikes in fires. Of course, every loss is still loss.
Thus, as
the world watches in horror, Global Forest Watch seems remarkable calm. So far, we
only have a 39% increase in fires compared to last year. However, they point
out that over 60% of fires take place from September through December, so what
happens next is important.
What I have seen so far is
incredible. This is the most global attention, outrage, and pressure I have
ever seen over an environmental issue. Trade deals are up in the air, the
Finnish minister might ban beef imports from Brazil, and the far right-wing president
went from blaming NGOs to deploying warplanes to dump water on the burning
Amazonian forests in Rondonia. Nearly every article refers to the Amazon as the
âlungs of the planetâ and many include âthe cradle of biodiversityâ and
references to enormous carbon stocks held in these forests. The value of
forests are broadly recognized, and this is great news. What we are destroying
is bad news, but at least itâs big news. Many articles even point out that
cattle ranching is the main driver of deforestation, and if you are bothered by
destruction of the Amazon you can stop eating beef.
Even
declining deforestation rates mean more deforestation every year. Perhaps this
rapid spike is just what we need to wake up and take action before critical
tipping points are reached. Though I am alarmed and partially terrified by the
rise in right wing, âpro-businessâ governments, I am inspired by the increasing
awareness and participation to create a more just and sustainable world. Complacency
is no longer an option. Itâs time to take action, and we are.
We are
really all in this together. Itâs not business vs. environmentalists. We are
all humans who depend on the sky to deliver water, the air to carry enough
oxygen, the climate to be stable enough to continue growing food, and all the
species to fulfill their functions. For all of us to survive, we need
functioning ecosystems. Let us take united and coordinate action to build
sustainable economies and livelihoods and a healthy planet.