Organic Swedish pig production according to KRAV’s regulations performed better than conventional Swedish pig production on 11 of 20 sustainability indicators if the comparison was made per kg of pork, and on 18 out of 20 indicators if the comparison was made per hectare. The indicators included both environmental, social and economic aspects. The organic pork had poorer economic sustainability at the farm and slaughterhouse level, but better at retail compared to the conventional one. Climate impact was the same for both systems, while organic production had a higher risk of eutrophication and acidification, but lower for ecotoxicity, negative impact on biodiversity and loss of soil carbon. The social risk for the pigs was significantly lower in organic production, but there are risks for social problems for workers and local communities associated with imported soy and the use of renewable energy.
In a so-called Life Cycle Sustainability Assessment (LCSA), the environmental, social and economic sustainability of Swedish organic pig production has been compared with that of Swedish conventional pig production. The results were calculated per 1000 kg of boneless cooked pork and per 1000 hectares of pig production. For the environmental part, common indicators such as climate impact, eutrophication and acidification were used, but also indicators that are less common such as toxicity to assess adverse effects from emissions of toxic substance (for example as a result of the use of pesticides), effects on biodiversity and the change in soil carbon.
With regard to social sustainability, so-called social life cycle analysis (SLCA) was used in which the “social risk” for workers (in feed production, on the pig farm and in the slaughterhouse), the local community, actors in the value chain, society, consumers and pigs was assessed based on a large number of social aspects on a scale from 0 (no risk) to 100 (very high risk). One aspect for workers was, for example, the risk of child labor. For example this was judged to be low for soy workers in Brazil (applies to imported soy in conventional production). The welfare of the pigs was assessed using 19 indicators that included, for example, the incidence of various diseases and injuries, outdoor access, access to roughage and distraction materials, etc. Data was obtained from previous scientific studies, statistics, reports and from a global database of social aspects (Soca). Risks in different subsystems were aggregated based on how long it took to produce 1000 kg of pork or conduct 1000 hectares of pig production. This means, for example, that the conditions for the pig during rearing plays a greater role than the conditions during slaughter, as the pig spends much longer time on the farm.
Economic sustainability was measured with the indicator Value Added / Life Cycle Costing (VA / LCC). This was calculated separately for the pig farm, the slaughterhouse and the retail. The Life Cycle Cost includes all running costs (including wages) that an operator (farm, slaughterhouse or retail) has for production and the Value Added is calculated as the price an operator receives for pork. The quota thus says something about the profitability of the farm, slaughterhouse and retail.
The results showed that the organic pig farm performed better than the conventional one on 18 of the 20 indicators examined when the production systems were compared per unit area. Conventional production performed better for the economic indicators for the farm and the slaughterhouse. Although the price of organic pork is higher, organic production had higher costs due to it being more labor-intensive and since it uses more feed than conventional production. This means a VA / LCC quota of less than one for organic production, which means that the price the farmer gets does not even cover the running costs. On the other hand, this quota for retail is significantly higher, 27 for organic and 13 for conventional, which signals a high willingness to pay for organic pork among consumers and high margins in the retail sector for both organic and conventional pork.
If the comparison is instead made based on the production of 1000 kg of pork, organic production performed better than the conventional one on 11 of the 20 indicators. In terms of environmental impact, both production systems had the same climate impact, while eutrophication, acidification and consumption of fossil resources were higher in organic production. Ecotoxicity, impact on biodiversity and ground carbon loss were lower in the organic production. In terms of social sustainability, the “social risk” was higher in organic production for workers and the local community, a result of social risks linked to organic soy from China and from accidents linked to renewable energy production. But for other actors, the social risk was lower for organic production, especially for pigs, it was significantly lower in organic production due to, among other things, larger spaces, outdoor access and access to roughage. However, there were indicators for pigs where the conventional system had a lower risk, for example in terms of the presence of parasites.
The authors conclude by stating that LCSA has the advantage of including both environmental, social and economic aspects in the sustainability analysis. Previous LCAs on pork have mainly dealt with the environmental aspects. However, choosing a number of relevant indicators can be difficult and the choice also affects the result, as well as how the indicators are designed and weighed together.
Read the whole study here:
Zira S, Rydhmer L, Ivarsson E, Hoffman R, Röös E (2021) A life cycle sustainability assessment of organic and conventional pork supply chains in Sweden. Sustainable Production and Consumption 28, 21-38. https://doi.org/10.1016/j.spc.2021.03.028
See also this study on SLCA for the two systems but using a slightly different methodology:
Zira S, Röös E, Ivarsson E, Hoffman R, Rydhmer L (2020) Social life cycle assessment of Swedish organic and conventional pork production. International Journal of Life Cycle Assessment. https://doi.org/10.1007/s11367-020-01811-y