Hydrogen peroxide electrosynthesis in real human urine using a single chamber cell

Researchers at Clemson University, the University of Cape Town, and the Swedish University of Agricultural Sciences have developed a new way to recover valuable nutrients from urine. This method, described in the journal Water Research, uses a special electrochemical cell that synthesise hydrogen peroxide in real human urine which stabilizes urea and alkalises urine to recover phosphorus as precipitates. The cell features a magnesium (Mg) anode and a carbon-based gas-diffusion cathode. The effectiveness of the process depends on the current density (the amount of electrical current per unit volume of urine). Lower current densities stabilize urea and facilitate the formation of struvite without significantly increasing the urine pH. Higher current densities produce more H2O2 but can cause the urine pH to rise too much, leading to the formation of less desirable calcium phosphate solids instead of struvite. Overall, the study provides a novel approach to stabilise human urine at source, without the need for physical dosing of chemicals, making nutrient recovery from urine more practical and safer. For more detailed information, the full study is accessible at:

Arve, P. H., Mason, M., Randall, D. G., Simha, P., & Popat, S. C. (2024). Concomitant urea stabilization and phosphorus recovery from source-separated fresh urine in magnesium anode-based peroxide-producing electrochemical cells. Water Research256, 121638.

 

Leave a comment

Your email address will not be published. Required fields are marked *